
CS 600.226: Data Structures
Michael Schatz

Oct 3 2018
Lecture 15. Graphs

Agenda
1. Questions on HW4

2. Recap on Trees

3. Graphs

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Assignment 4: Stacking Queues

Out on: September 28, 2018
Due by: October 5, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview
The fourth assignment is mostly about stacks and dequeues. For the
former you'll build a simple calculator application, for the latter you'll
implement the data structure in a way that satisfies certain performance
characteristics (in addition to the usual correctness properties).

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 1: Calculating Stacks (50%)

Your first task is to implement a basic RPN calculator that supports integer
operands like 1, 64738, and -42 as well as the (binary) integer operators +, -, *, /,
and %. Your program should be called Calc and work as follows:

• You create an empty Stack to hold intermediate results and then repeatedly
accept input from the user. It doesn't matter whether you use the ArrayStack
or the ListStack we provide, what does matter is that those specific types
appear only once in your program.

• If the user enters a valid integer, you push that integer onto the stack.
• If the user enters a valid operator, you pop two integers off the stack,

perform the requested operation, and push the result back onto the stack.
• If the user enters the symbol ? (that's a question mark), you print the current

state of the stack using its toString method followed by a new line.
• If the user enters the symbol . (that's a dot or full-stop), you pop the top

element off the stack and print it (only the top element, not the entire stack)
followed by a new line.

• If the user enters the symbol ! (that's an exclamation mark or bang), you exit
the program.

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

$ java Calc
?
[]
10
?
[10]
20 30
?
[30, 20, 10]
*
?
[600, 10]
+
?
[610]
.
610
!
$

$ java Calc
? 10 ? 20 30 ? *
? + ? . !
[]
[10]
[30, 20, 10]
[600, 10]
[610]
610
$

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 2: Hacking Growable Dequeues (50%)
Your second task is to implement a generic ArrayDequeue class as outlined in
lecture. As is to be expected, ArrayDequeue must implement the Dequeue
interface we provided on github.

• Your implementation must be done in terms of an array that grows by doubling
as needed. It's up to you whether you want to use a basic Java array or the
SimpleArray class you know and love; just in case you prefer the latter, we've
once again included it on the github directory for this assignment. Your initial
array must have a length of one slot only! (Trust us, that's going to make
debugging the "doubling" part a lot easier.)

• Your implementation must support all Dequeue operations except insertion in
(worst-case) constant time; insertion can take longer every now and then
(when you need to grow the array), but overall all insertion operations must be
constant amortized time as discussed in lecture.

• You should provide a toString method in addition to the methods required by
the Dequeue interface. A new dequeue into which 1, 2, and 3 were inserted
using insertBack() should print as [1, 2, 3] while an empty dequeue should
print as []

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Bonus Problem (5 pts)

Develop an algebraic specification for the abstract data type Queue. Use

new, empty, enqueue, dequeue, and front (with the meaning of each as

discussed in lecture) as your set of operations. Consider unbounded queues

only.

The difficulty is going to be modelling the FIFO (first-in-first-out) behavior

accurately. You'll probably need at least one axiom with a case distinction

using an if expression; the syntax for this in the Array specification for

example.

Doing this problem without resorting to Google may be rather helpful for the

upcoming midterm. There's no need to submit the problem, but you can

submit it if you wish; just include it at the end of your README file.

Agenda
1. Questions on HW4

2. Recap on Trees

3. Graphs

Trees

Types of Trees

Unordered
Binary tree

Linear
List

3-ary Tree
(k-ary tree has k children)

Single root node (no parent)
Each non-root node has at most 1 parent

Node may have 0 or more children

Internal node: has children; includes root unless tree is just root
Leaf node (aka external node): no children

Special Trees

Full Binary
Tree

Every node has
0 or 2 children

What is the maximum number of leaf nodes in a complete binary tree?

Complete Binary Tree
Every level full, except

potentially the bottom level

2h

What is the maximum number of nodes in a complete binary tree? 2h+1 -1

Height of root
= 0

Total Height
= 3

What fraction of the nodes in a complete binary tree are leaves? about half

Balancing Trees

Balanced Binary Tree
Minimum possible height

Unbalanced Tree
Non-minimum height

Balanced but not complete!

Tree Heights

Properties of logarithms

Height with n leaves? = lg (n)

Height with n nodes? = n/2 leaves

= O(lg n)

= O(lg n)= lg (n/2) = lg (n) – lg 2 = lg(n) – 1

3-ary with n leaves? = log3 (n) = O(lg n)

k-ary with n nodes? = n/k leaves = O(lg n)= logk(n/k) = logk(n) – logk(k)

Tree Interface
public interface Tree<T>{

Position <T> insertRoot(T t)
throws TreeNotEmptyException;

Position <T> insertChild(Position <T> p, T t)
throws InvalidPositionException;

boolean empty();

Position <T> root()
throws TreeEmptyException;

Position <T>[] children(Position <T> p)
throws InvalidPositionException , LeafException;

Position <T> parent(Position<T> p)
throws InvalidPositionException ;

boolean leaf (Position <T> p)
throws InvalidPositionException ;

T remove(Position<T> p)
throws InvalidPositionException, NotALeafException;

}

Why insertRoot?

Why children()?

What should
parent(root())

return?

What should remove(root()) do?

Tree Implementation
parent

children[0] children[2]

parent

children

siblings

A

B C D

F GE

A

B C D

F GE

Simple Implementation
Overhead managing children[]

Less Space Overhead
(Except remove may require

doubly linked lists)

children[1]

Tree Traversals

+

1 *

2 3

Tree Traversals

+

1 *

2 3

Tree Traversals

+

1 *

2 3

Note here we visit children from left to right, but could go right to left

Notice we visit internal nodes 3 times:
1: stepping down from parent
2: after visiting first child
3: after visiting second child

Different algs work at different times
1: preorder + 1 * 2 3
2: inorder 1 + 2 * 3
3: postorder 1 2 3 * +

Traversal Implementations

A

B DC

E F

J

G IH

LK

How to traverse?

basicTraversal(Node n):
// just entered from top
basicTraversal(n.left)
// just got back from left
basicTraversal(n.middle)
// just got back from middle
basicTraversal(n.right)
// just got back from right
return // leave to top

InOrder Traversals

A

B DC

E F

J

G IH

LK

How to inorder print?

InOrderTraversal(Node n):
if n is not null

InOrderTraversal(n.left)
print(n)
InOrderTraversal(n.middle)
InOrderTraversal(n.right)

InOrder Traversals

A

B DC

E F

J

G IH

LK

How to inorder print?

InOrderTraversal(Node n):
if n is not null

InOrderTraversal(n.left)
print(n)
InOrderTraversal(n.middle)
InOrderTraversal(n.right)

What is the inorder print?

E

B

F

J

A

C D

G IH

LK

InOrder Traversals

A

B DC

E F

J

G IH

LK

How to inorder print?

InOrderTraversal(Node n):
if n is not null

InOrderTraversal(n.left)
print(n)
InOrderTraversal(n.middle)
InOrderTraversal(n.right)

What is the inorder print?

EBFJ AC GDHKIL

E

B

F

J

A

C D

G IH

LK

PostOrder Traversals

A

B DC

E F

J

G IH

LK

How to postorder print?

PostOrderTraversal(Node n):
for c in x.children:

PostOrderTraversal(c)
print(n)

PostOrder Traversals

A

B DC

E F

J

G IH

LK

How to postorder print?

PostOrderTraversal(Node n):
for c in x.children:

PostOrderTraversal(c)
print(n)

What is the postorder print?

E

B

F

J

A

C D

G IH

LK

PostOrder Traversals

A

B DC

E F

J

G IH

LK

How to postorder print?

PostOrderTraversal(Node n):
for c in x.children:

PostOrderTraversal(c)
print(n)

What is the postorder print?

EJFB C GHKLIDA

E

B

F

J

A

C D

G IH

LK

InOrder vs PostOrder
What is the inorder print?

EBFJ AC GDHKIL

What is the postorder print?

EJFB C GHKLIDA

PostOrderTraversal(Node n):
for c in x.children:

PostOrderTraversal(c)
print(n)

InOrderTraversal(Node n):
if n is not null

InOrderTraversal(n.left)
print(n)
InOrderTraversal(n.middle)
InOrderTraversal(n.right)

PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?

PreOrderTraversal(Node n):
print(n)
for c in x.children:

PreOrderTraversal(c)

PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?

PreOrderTraversal(Node n):
Stack s
s.push(n)
while (!s.empty()):

Node x = s.pop()
print(x)
for c in x.children:

s.push(c)

[A]
[D,C,B]
[D,C,F,E]
[D,C,F]
[D,C,J]
[D,C]
[D]
[I, H, G]
…

PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?[A]
[D,C,B]
[D,C,F,E]
[D,C,F]
[D,C,J]
[D,C]
[D]
[I, H, G]
…

Stack leads to a
Depth-First Search

PreOrderTraversal(Node n):
Stack s
s.push(n)
while (!s.empty()):

Node x = s.pop()
print(x)
for c in x.children:

s.push(c)

Level Order Traversals

A

B DC

E F

J

G IH

LK

How to level order print?

(A) (B C D) (E F G H I) (J K L)

LevelOrderTraversal(Node n):
Queue q
s.enqueue(n)
while (!q.empty()):

Node x = q.dequeue()
print(x)
for c in x.children:

s.enqueue(c)

[A]
[D,C,B]
[F,E,D,C]
[F,E,D]
[I,H,G,F,E]
[I,H,G,F]
[J,I,H,G]
[J,I,H]
…

Queue leads to a
Breadth-First Search

Multiple Traversals
public abstract class Operation<T> {

void pre(Position<T> p) {}
void in(Position<T> p) {}
void post(Position<T> p) {}

}

public interface Tree<T> {
...
traverse(Operation<T> o);
...

}

// Tree implementation pseudo-code:
niceTraversal(Node n, Operation o):

if n is not null:
o.pre(n)
niceTraversal(n.left, o)
o.in(n)
niceTraversal(n.right, o)
o.post(n)

}

Client extends
Operation<T> but
overrides just the
methods that are

needed J

Abstract class
simplifies the use of

function objects -
functors

Implementation (1)
public class TreeImplementation<T> implements Tree<T> {
...

private static class Node<T> implements Position<T> {
T data;
Node<T> parent;
ArrayList<Node<T>> children;
public Node(T t) {

this.children = new ArrayList<Node<T>>();
this.data = t;

}
public T get() {

return this.data;
}

public void put(T t) {
this.data = t;

}
}

}

Constructor ensures children,
data are initialized correctly

What other fields might we want
to include? (Hint: Position<>)

Should set the “owner” field to
point to this Tree so Position<>
can be checked

Implementation (2)
public Position<T> insertRoot(T t) throws InsertionException {

if (this.root != null) {
throw new InsertionException();

}
this.root = new Node<T>(t);
this.elements += 1;
return this.root;

}

public Position<T> insertChild(Position<T> pos, T t)
throws InvalidPositionException {

Node<T> p = this.convert(pos);
Node<T> n = new Node<T>(t);
n.parent = p;
p.children.add(n);
this.elements += 1;
return n;

}
convert method (a private
helper) takes a position,
validates it, and then returns
the Node<T> object hiding
behind the position

convert?

Implementation (3)
public boolean empty() {

return this.elements == 0;
}

public int size() {
return this.elements;

}

public boolean hasParent(Position<T> p) throws
InvalidPositionException {

Node<T> n = this.convert(p);
return n.parent != null;

}

public boolean hasChildren(Position<T> p) throws
InvalidPositionException {

Node<T> n = this.convert(p);
return !n.children.isEmpty();

}

Traversal
private void recurse(Node<T> n, Operation<T> o) {

if (n == null) { return; }
o.pre(n);
for (Node<T> c: n.children) {

this.recurse(c, o);
// figure out when to call o.in(n)

}
o.post(n);

}

public void traverse(Operation<T> o) {
this.recurse(this.root, o);

}

Private helper
method
working with
Node<T>
rather than
Position<T>

Just make
sure we start
at root

When should we call o.in()?

We don’t want to call the in method after we visit the last child.
We do want to call the in method even for a node with no children

More to come…

Graphs

Graphs are Everywhere!

Computers in a network, Friends on Facebook, Roads & Cities on
GoogleMaps, Webpages on Internet, Cells in your body, …

Graphs

A B

• Nodes aka vertices
– People, Proteins, Cities, Genes, Neurons, Sequences, Numbers, …

• Edges aka arcs
– A is connected to B
– A is related to B
– A regulates B
– A precedes B
– A interacts with B
– A activates B
– …

Graph Types

A

B

C

List Tree

A

B C D

F HGE

I J

Directed
Acyclic
Graph

A

C D E

F

G

B

A

B C

D E

Cycle

A

B C

D E

Complete

Definitions (1)

A B

Directed Edge

C D

Undirected Edge
E

Self Edge
(Unusual but usually allowed)

• A and B are adjacent

• An edge connected to a vertex is incident on that vertex

• The number of edges incident on a vertex is the degree of that vertex
• For directed graphs, separately report indegree and outdegree

• A multigraph allows multiple edges between the same pair of nodes, a
simple graph does not allow multiple edges (most common)

Definitions (2)
A B

• A path is a sequence of edges e1, e2, … en in which each edge starts from
the vertex the previous edge ended at

• A path that starts and ends at the same node is a cycle

• The number of edges in a path is called the length of the path

• A graph is connected if there is a path between every pair of nodes,
otherwise it is disconnected into >1 connected components

C F G

D E

H I

J

The Road to the White House
Maps
Nodes: Cities / Intersections: Name / GPS Location
Edges: Roads / Flight Path: Distance, Time, Cost

Graph Interface
public interface Graph<V,E> {

...
Position<V> insertVertex(V v);

Position<E> insertEdge(Position<V> from, Position<V> to, E e)
throws InvalidPositionException, InsertionException;

V removeVertex(Position<V> p)
throws InvalidPositionException, RemovalException;

E removeEdge(Position<E> p)
throws InvalidPositionException;

Iterable<Position<V>> vertices();

Iterable<Position<E>> edges();

Iterable<Position<E>> incomingEdges(Position<V> p)
throws InvalidPositionException;

Iterable<Position<E>> outgoingEdges(Position<V> p)
throws InvalidPositionException;

...
}

Separate generic
types for vertices <V>

and edges <E>

Can iterate through all the nodes OR iterate through all the edges
as different algorithms may require one or the other

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Graph

nodes

Node Node Node Node Node Node

A B C D
in:

out:

E F

edges

Edge Edge Edge

A
D

B
D

D
F

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Graph

nodes

Node Node Node Node Node Node

A B C D
in:

out:

E F

edges

Edge Edge Edge

A
D

B
D

D
F

Do we need a separate edges list?

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Graph

nodes

Node Node Node Node Node Node

A B C D
in:

out:

E F

Edge Edge Edge

A
D

B
D

D
F

Note the labels in the edges are really
references to the corresponding node objects!

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Graph

nodes

Node Node Node Node Node Node

A B C D
in:

out:

E F

Edge Edge Edge

A B F

Often possible for the Edge to only contain a
reference to the “other” node

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Complexity Analysis
If n is the number of vertices, and m is the number of
edges, we need O(n + m) space to represent the graph

When we insert a vertex, allocate one object and two
empty edge lists: O(1)

When we insert an edge we allocate one object and
insert the edge into appropriate lists for the incident
vertices: O(1)

Remove a node? O(1); Only after edges removed

Remove
an edge?

O(d) where d is max degree;
O(n) worse case

Find/check edge
between nodes?

O(d);
O(n) worst case

digraph G {
A->B
B->C
A->C

}
$ dot -Tpdf -o g.pdf g.dot

Representing Graphs

A

C D E

F

G

B

A B C D E F G

A 1 1 1

B 1 1

C 1 1

D 1

E 1

F 1

G

Adjacency Matrix
Good for dense graphs

Fast, Fixed storage: N2 bits or N2 weights

Incidence List
Good for sparse graphs

Compact storage: ~8 bytes/edge

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Edge List
Easy, good if you (mostly) need

to iterate through the edges
~16 bytes / edge

A,C B,C C,F
A,D B,D C,G
A,E B,E D,F

E,F F,G

Tools
Graphviz: http://www.graphviz.org/
Gephi: https://gephi.org/
Cytoscape: http://www.cytoscape.org/

http://www.graphviz.org/
https://gephi.org/
http://www.cytoscape.org/

Next Steps

1. Work on HW4

2. Check on Piazza for tips & corrections!

