
CS 600.226: Data Structures
Michael Schatz

Oct 1 2018
Lecture 14. Trees

Agenda
1. Review HW3

2. Questions on HW4

3. Recap on Lists

4. Trees

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Assignment 3: Assorted Complexities

Out on: September 21, 2018
Due by: September 28, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 60% (where applicable)
Solution Design and README 10% (where applicable)
Style 10% (where applicable)
Testing 10% (where applicable)

Overview
The third assignment is mostly about sorting and how fast things go. You
will also write yet another implementation of the Array interface to help you
analyze how many array operations various sorting algorithms perform.

Note: The grading criteria now include 10% for unit testing. This refers to
JUnit 4 test drivers, not some custom test program you hacked. The
problems (on this and future assignments) will state whether you are
expected to produce/improve test drivers or not.

Agenda
1. Review HW3

2. Questions on HW4

3. Recap on Lists

4. Trees

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Assignment 4: Stacking Queues

Out on: September 28, 2018
Due by: October 5, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview
The fourth assignment is mostly about stacks and dequeues. For the
former you'll build a simple calculator application, for the latter you'll
implement the data structure in a way that satisfies certain performance
characteristics (in addition to the usual correctness properties).

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 1: Calculating Stacks (50%)

Your first task is to implement a basic RPN calculator that supports integer
operands like 1, 64738, and -42 as well as the (binary) integer operators +, -, *, /,
and %. Your program should be called Calc and work as follows:

• You create an empty Stack to hold intermediate results and then repeatedly
accept input from the user. It doesn't matter whether you use the ArrayStack
or the ListStack we provide, what does matter is that those specific types
appear only once in your program.

• If the user enters a valid integer, you push that integer onto the stack.
• If the user enters a valid operator, you pop two integers off the stack,

perform the requested operation, and push the result back onto the stack.
• If the user enters the symbol ? (that's a question mark), you print the current

state of the stack using its toString method followed by a new line.
• If the user enters the symbol . (that's a dot or full-stop), you pop the top

element off the stack and print it (only the top element, not the entire stack)
followed by a new line.

• If the user enters the symbol ! (that's an exclamation mark or bang), you exit
the program.

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

$ java Calc
?
[]
10
?
[10]
20 30
?
[30, 20, 10]
*
?
[600, 10]
+
?
[610]
.
610
!
$

$ java Calc
? 10 ? 20 30 ? *
? + ? . !
[]
[10]
[30, 20, 10]
[600, 10]
[610]
610
$

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 2: Hacking Growable Dequeues (50%)
Your second task is to implement a generic ArrayDequeue class as outlined in
lecture. As is to be expected, ArrayDequeue must implement the Dequeue
interface we provided on github.

• Your implementation must be done in terms of an array that grows by doubling
as needed. It's up to you whether you want to use a basic Java array or the
SimpleArray class you know and love; just in case you prefer the latter, we've
once again included it on the github directory for this assignment. Your initial
array must have a length of one slot only! (Trust us, that's going to make
debugging the "doubling" part a lot easier.)

• Your implementation must support all Dequeue operations except insertion in
(worst-case) constant time; insertion can take longer every now and then
(when you need to grow the array), but overall all insertion operations must be
constant amortized time as discussed in lecture.

• You should provide a toString method in addition to the methods required by
the Dequeue interface. A new dequeue into which 1, 2, and 3 were inserted
using insertBack() should print as [1, 2, 3] while an empty dequeue should
print as []

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Bonus Problem (5 pts)

Develop an algebraic specification for the abstract data type Queue. Use

new, empty, enqueue, dequeue, and front (with the meaning of each as

discussed in lecture) as your set of operations. Consider unbounded queues

only.

The difficulty is going to be modelling the FIFO (first-in-first-out) behavior

accurately. You'll probably need at least one axiom with a case distinction

using an if expression; the syntax for this in the Array specification for

example.

Doing this problem without resorting to Google may be rather helpful for the

upcoming midterm. There's no need to submit the problem, but you can

submit it if you wish; just include it at the end of your README file.

Agenda
1. Review HW3

2. Questions on HW4

3. Recap on Lists

4. Trees

Stacks versus Queues

LIFO: Last-In-First-Out
Add to top +

Remove from top

FIFO: First-In-First-Out
Add to back +

Remove from front

Stacks versus Queues

LIFO: Last-In-First-Out
Add to top +

Remove from top

FIFO: First-In-First-Out
Add to back +

Remove from front

Dequeues

front back

insertFront() insertBack()

removeBack()removeFront()

Dynamic Data Structure used for storing sequences of data
• Insert/Remove at either end in O(1)

• If you exclusively add/remove at one end, then it becomes a stack

• If you exclusive add to one end and remove from other, then it
becomes a queue

• Many other applications:
• browser history: deque of last 100 webpages visited

Singly Linked Lists
insertFront insertBack

removeBackremoveFront

addme.next = first; first = addme; last.next = addme; addme.next = null

first = first.next; ???

Deque

first

last

null

Node

1
next
prev

Doubly Linked List

Node

2
next
prev

Node

3
next
prev

Node

4
next
prev

null

Very similar to a singly linked list, except each node has a
reference to both the next and previous node in the list

A little more overhead, but significantly increased flexibility: supports
insertFront(), insertBack(), removeFront(), removeBack(),

insertBefore(), removeMiddle()

List v4
public interface Node<T> {

void setValue(T t);
T getValue();

void setNext(Node<T> n);
void setPrev(Node<T> n);

void getNext(Node<T> n);
void getPrev(Node<T> n);

}

public interface List<T> {
boolean empty();
int length();

Node<T> front();
Node<T> back();

void insertFront(Node<T> t);
void insertBack(Node<T> t);

void removeFront();
void removeBack();

}

List v4
public interface Node<T> {

void setValue(T t);
T getValue();

void setNext(Node<T> n);
void setPrev(Node<T> n);

void getNext(Node<T> n);
void getPrev(Node<T> n);

}

public interface List<T> {
boolean empty();
int length();

Node<T> front();
Node<T> back();

void insertFront(Node<T> t);
void insertBack(Node<T> t);

void removeFront();
void removeBack();

}

public interface Position<T> {
// empty on purpose

}

public interface List<T> {
// simplified interface
int length();

Position<T> insertFront(T t);
Position<T> insertBack(T t);
void insertBefore(Position<T> t);
void insertAfter(Position<T> t);

void removeAt(Position<T> p);
}

List v4
“I am a position and while you
can hold on to me, you can’t
do anything else with me!”

Inserting at front or back
creates the Position objects.

If you want, you could keep
references to the Position

objects even in the middle of
the list

Pass in a Position, and it will
remove it from the list

public interface Position<T> {
// empty on purpose

}

public interface List<T> {
// simplified interface
int length();

Position<T> insertFront(T t);
Position<T> insertBack(T t);
void insertBefore(Position<T> t);
void insertAfter(Position<T> t);

void removeAt(Position<T> p);
}

Living in a null world

List

front

back

null

List

front

back

Node

Mike
next
prev

null

null

List

front

back

null

Node

Mike
next
prev

Node

Peter
next
prev

null

Living in a null world

List

front

back

null

List

front

back

Node

Mike
next
prev

null

null

List

front

back

null

Node

Mike
next
prev

Node

Peter
next
prev

null

public Position <T> insertBack(T t) {
...
if (this.back != null) {

this.back.next = n;
}
if (this.front == null) {

this.front = n;
}
...

}

public Position <T> insertFront(T t) {
...
if (this.front != null) {

this.front.prev =n;
}
if (this.back==null) {

this.back = n;
}
...

}

public void removeAt(Position<T> p) {
...
if (n.next != null) { n.next.prev = n.prev; }
if (n.prev != null) { n.prev.next = n.next; }
...

}

List

first

last

null

Node

f
next
prev

Doubly Linked List with Sentinels

Node

b
next
prev

null

An “empty” list is initialized with the special front and
back sentinels

List

first

last

null

Node

f
next
prev

Doubly Linked List with Sentinels

Node

1
next
prev

Node

b
next
prev

null

The user data is placed in between sentinels

List

first

last

null

Node

f
next
prev

Doubly Linked List with Sentinels

Node

1
next
prev

Node

2
next
prev

Node

b
next
prev

null

For the cost of a tiny bit of extra memory, the code gets significantly simpler!

Get ready for HW5 J

Trees

Trees are all around us J

Types of Trees

Unordered
Binary tree

Linear
List

3-ary Tree
(k-ary tree has k children)

Single root node (no parent)
Each non-root node has at most 1 parent

Node may have 0 or more children

Internal node: has children; includes root unless tree is just root
Leaf node (aka external node): no children

Not Trees

Node 4 has 2
parents

Forms a (self) cycle
2 root nodes:

Forest

Single root node (no parent)
Each internal node has at most 1 parent

Node may have 0 or more children

Special Trees

Full Binary
Tree

Every node has
0 or 2 children

What is the maximum number of leaf nodes in a complete binary tree?

Complete Binary Tree
Every level full, except

potentially the bottom level

2h

What is the maximum number of nodes in a complete binary tree? 2h+1 -1

Height of root
= 0

Total Height
= 3

What fraction of the nodes in a complete binary tree are leaves? about half

Balancing Trees

Balanced Binary Tree
Minimum possible height

Unbalanced Tree
Non-minimum height

Balancing Trees

Balanced Binary Tree
Minimum possible height

Unbalanced Tree
Non-minimum height

?

Balancing Trees

Balanced Binary Tree
Minimum possible height

Unbalanced Tree
Non-minimum height

Balanced but not complete!

Balancing Trees

Balanced Binary Tree
Minimum possible height

What is the height of a balanced binary tree?

Unbalanced Tree
Non-minimum height

lg n

What is the height of a balanced 3-ary tree? log3 n

What is the height of a k-ary tree? logk n

How much taller is a binary tree than a k-ary tree? lg n/logk n = lg k

What is the maximum height of an unbalanced tree? n-1 L

Tree Heights

Tree Heights

Tree Heights
(~1M leaves / ~2M nodes)

Binary Tree
H=20

3-ary Tree
H=13

Tree Interface
public interface Tree<T>{

Position <T> insertRoot(T t)
throws TreeNotEmptyException;

Position <T> insertChild(Position <T> p, T t)
throws InvalidPositionException;

boolean empty();

Position <T> root()
throws TreeEmptyException;

Position <T>[] children(Position <T> p)
throws InvalidPositionException , LeafException;

Position <T> parent(Position<T> p)
throws InvalidPositionException ;

boolean leaf (Position <T> p)
throws InvalidPositionException ;

T remove(Position<T> p)
throws InvalidPositionException, NotALeafException;

}

Why insertRoot?

Why children()?

What should
parent(root())

return?

What should remove(root()) do?

Tree Traversals

+

1 *

2 3

Tree Traversals

+

1 *

2 3

Tree Traversals

+

1 *

2 3

Note here we visit children from left to right, but could go right to left

Notice we visit internal nodes 3 times:
1: stepping down from parent
2: after visiting first child
3: after visiting second child

Different algs work at different times
1: preorder
2: inorder
3: postorder

Tree Traversals

+

1 *

2 3

Note here we visit children from left to right, but could go right to left

Notice we visit internal nodes 3 times:
1: stepping down from parent
2: after visiting first child
3: after visiting second child

Different algs work at different times
1: preorder + 1 * 2 3
2: inorder
3: postorder

Tree Traversals

+

1 *

2 3

Note here we visit children from left to right, but could go right to left

Notice we visit internal nodes 3 times:
1: stepping down from parent
2: after visiting first child
3: after visiting second child

Different algs work at different times
1: preorder + 1 * 2 3
2: inorder 1 + 2 * 3
3: postorder

Tree Traversals

+

1 *

2 3

Note here we visit children from left to right, but could go right to left

Notice we visit internal nodes 3 times:
1: stepping down from parent
2: after visiting first child
3: after visiting second child

Different algs work at different times
1: preorder + 1 * 2 3
2: inorder 1 + 2 * 3
3: postorder 1 2 3 * +

Traversal Implementations

A

B DC

E F

J

G IH

LK

How to traverse?

basicTraversal(Node n):
// just entered from top
basicTraversal(n.left)
// just got back from left
basicTraversal(n.middle)
// just got back from middle
basicTraversal(n.right)
// just got back from right
return // leave to top

InOrder Traversals

A

B DC

E F

J

G IH

LK

How to inorder print?

InOrderTraversal(Node n):
if n is not null

InOrderTraversal(n.left)
print(n)
InOrderTraversal(n.right)

PostOrder Traversals

A

B DC

E F

J

G IH

LK

How to postorder print?

PostOrderTraversal(Node n):
for c in x.children:

PostOrderTraversal(c)
print(n)

PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?

PreOrderTraversal(Node n):
Stack s
s.push(n)
while (!s.empty()):

Node x = s.pop()
print(x)
for c in x.children:

s.push(c)

[A]
[D,C,B]
[D,C,F,E]
[D,C,F]
[D,C,J]
[D,C]
[D]
[I, H, G]
…

PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?[A]
[D,C,B]
[D,C,F,E]
[D,C,F]
[D,C,J]
[D,C]
[D]
[I, H, G]
…

Stack leads to a
Depth-First Search

PreOrderTraversal(Node n):
Stack s
s.push(n)
while (!s.empty()):

Node x = s.pop()
print(x)
for c in x.children:

s.push(c)

Level Order Traversals

A

B DC

E F

J

G IH

LK

How to level order print?

(A) (B C D) (E F G H I) (J K L)

LevelOrderTraversal(Node n):
Queue q
s.enqueue(n)
while (!q.empty()):

Node x = q.dequeue()
print(x)
for c in x.children:

s.enqueue(c)

[A]
[D,C,B]
[F,E,D,C]
[F,E,D]
[I,H,G,F,E]
[I,H,G,F]
[J,I,H,G]
[J,I,H]
…

Queue leads to a
Breadth-First Search

Call back interface
public interface Tree<T> {

...
preorder(Operation<T> o);
inorder(Operation<T> o);
postorder(Operation<T> o);
...

}

// The Operation<T> interface would look like this:
public interface Operation<T> {

void do(Position<T> p);
}

public class PrintOperation<T> implements Operation<T> {
public void do(Position<T> p) {

System.out.println(p.get());
}

}
...
PrintOperation op = new PrintOperation();
tree.inorder(op);

This works, but we will
need 3 separate methods
that have almost exactly

the same code

Multiple Traversals
public interface Operation<T> {

void pre(Position<T> p);
void in(Position<T> p);
void post(Position<T> p);

}

public interface Tree<T> {
...
traverse(Operation<T> o);
...

}

// Tree implementation pseudo-code:
niceTraversal(Node n, Operation o):

if n is not null:
o.pre(n)
niceTraversal(n.left, o)
o.in(n)
niceTraversal(n.right, o)
o.post(n)

}

Just implement the
method you need

One methods calls
client code for all 3

operators

Oh wait, we would
have to implement all

3 methods L

Java Abstract Classes
An abstract class is a class that is declared abstract—it may or may not include
abstract methods. Abstract classes cannot be instantiated, but they can be
subclassed.

An abstract method is a method that is declared without an implementation
(without braces, and followed by a semicolon), like this:

If a class includes abstract methods, then the class itself must be declared
abstract, as in:

Abstract classes are similar to interfaces. You cannot instantiate them, and they
may contain a mix of methods declared with or without an implementation.
However, with abstract classes, you can declare fields that are not static and
final, and define public, protected, and private concrete methods.

public abstract class GraphicObject {
// declare fields
// declare nonabstract and abstact methods
void setPen(Pen p) { this.pen = p }
abstract void draw();

}

abstract void moveTo(double deltaX, double deltaY);

Multiple Traversals
public abstract class Operation<T> {

void pre(Position<T> p) {}
void in(Position<T> p) {}
void post(Position<T> p) {}

}

public interface Tree<T> {
...
traverse(Operation<T> o);
...

}

// Tree implementation pseudo-code:
niceTraversal(Node n, Operation o):

if n is not null:
o.pre(n)
niceTraversal(n.left, o)
o.in(n)
niceTraversal(n.right, o)
o.post(n)

}

Client extends
Operation<T> but
overrides just the
methods that are

needed J

Implementation (1)
public class TreeImplementation<T> implements Tree<T> {
...

private static class Node<T> implements Position<T> {
T data;
Node<T> parent;
ArrayList<Node<T>> children;
public Node(T t) {

this.children = new ArrayList<Node<T>>();
this.data = t;

}
public T get() {

return this.data;
}

public void put(T t) {
this.data = t;

}
}

}

Constructor ensures children,
data are initialized correctly

What other fields might we want
to include? (Hint: Position<>)

Should set the “color” field to
point to this Tree so Position<>
can be checked

ArrayList

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Implementation (2)
public Position<T> insertRoot(T t) throws InsertionException {

if (this.root != null) {
throw new InsertionException();

}
this.root = new Node<T>(t);
this.elements += 1;
return this.root;

}

public Position<T> insertChild(Position<T> pos, T t)
throws InvalidPositionException {

Node<T> p = this.convert(pos);
Node<T> n = new Node<T>(t);
n.parent = p;
p.children.add(n);
this.elements += 1;
return n;

}
convert method (a private
helper) takes a position,
validates it, and then returns
the Node<T> object hiding
behind the position

convert?

Implementation (3)
public boolean empty() {

return this.elements == 0;
}

public int size() {
return this.elements;

}

public boolean hasParent(Position<T> p) throws
InvalidPositionException {

Node<T> n = this.convert(p);
return n.parent != null;

}

public boolean hasChildren(Position<T> p) throws
InvalidPositionException {

Node<T> n = this.convert(p);
return !n.children.isEmpty();

}

Traversal
private void recurse(Node<T> n, Operation<T> o) {

if (n == null) { return; }
o.pre(n);
for (Node<T> c: n.children) {

this.recurse(c, o);
// figure out when to call o.in(n)

}
o.post(n);

}

public void traverse(Operation<T> o) {
this.recurse(this.root, o);

}

Private helper
method
working with
Node<T>
rather than
Position<T>

Just make
sure we start
at root

When should we call o.in()?

We don’t want to call the in method after we visit the last child.
We do want to call the in method even for a node with no children

Alternate Implementation
parent

children[0] children[2]

parent

children

siblings

A

B C D

F GE

A

B C D

F GE

Simple Implementation
Overhead managing children[]

Less Space Overhead
(Except remove may require

doubly linked lists)

children[1]

Next Steps

1. Work on HW4

2. Check on Piazza for tips & corrections!

