
CS 600.226: Data Structures
Michael Schatz

Sept 28 2018
Lecture 13. More Lists

Agenda
1. Questions on HW3

2. Introduce HW4

3. Lists and More Lists

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Assignment 3: Assorted Complexities

Out on: September 21, 2018
Due by: September 28, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 60% (where applicable)
Solution Design and README 10% (where applicable)
Style 10% (where applicable)
Testing 10% (where applicable)

Overview
The third assignment is mostly about sorting and how fast things go. You
will also write yet another implementation of the Array interface to help you
analyze how many array operations various sorting algorithms perform.

Note: The grading criteria now include 10% for unit testing. This refers to
JUnit 4 test drivers, not some custom test program you hacked. The
problems (on this and future assignments) will state whether you are
expected to produce/improve test drivers or not.

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 1: Arrays with Statistics (30%)

Your first task for this assignment is to develop a new kind of Array
implementation that keeps track of how many read and write operations

have been performed on it. Check out the Statable interface first,

reproduced here in compressed form (be sure to use and read the full

interface available in github):

This describes what we expect of an object that can collect statistics about

itself. After a Statable object has been "in use" for a while, we can

check how many read and write operations it has been asked to perform.

We can also tell it to "forget" what has happened before and start counting

both kinds of operations from zero again.

public interface Statable {
void resetStatistics();
int numberOfReads();
int numberOfWrites();

}

Make sure to update: length(), get(), and put(); skip the iterator

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

You need to write classes implementing BubbleSort and
InsertionSort for this problem. Just like our example algorithms, your
classes have to implement the SortingAlgorithm interface.

All of this should be fairly straightforward once you get used to the
framework. Speaking of the framework, the way you actually "run" the
various algorithms is by using the PolySort.java program we've provided
as well. You should be able to compile and run it without yet having written
any sorting code yourself.

Here's how:

$ java PolySort 4000 <random.data

Algorithm Sorted? Size Reads Writes Seconds

Null Sort false 4,000 0 0 0.000007
Gnome Sort true 4,000 32,195,307 8,045,828 0.243852
Selection Sort true 4,000 24,009,991 7,992 0.252085

The running times can be a clue, but write up should reflect on more than time

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 3: Analysis of Selection Sort (20%)

Your final task for this assignment is to analyze the following selection sort
algorithm theoretically (without running it) in detail (without using O-
notation).

Here's the code, and you must analyze exactly this code (the line numbers
are given so you can refer to them in your writeup for this problem):

1: public static void selectionSort(int[] a) {
2: for (int i = 0; i < a.length - 1; i++) {
3: int min = i;
4: for (int j = i + 1; j < a.length; j++) {
5: if (a[j] < a[min]) {
6: min = j;
7: }
8: }
9: int t = a[i]; a[i] = a[min]; a[min] = t;

10: }
11: }

Work slowly, line-by-line analysis

Agenda
1. Updates on HW3

2. Introduce HW4

3. Lists and More Lists

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Assignment 4: Stacking Queues

Out on: September 28, 2018
Due by: October 5, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview
The fourth assignment is mostly about stacks and dequeues. For the
former you'll build a simple calculator application, for the latter you'll
implement the data structure in a way that satisfies certain performance
characteristics (in addition to the usual correctness properties).

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 1: Calculating Stacks (50%)

Your first task is to implement a basic RPN calculator that supports integer
operands like 1, 64738, and -42 as well as the (binary) integer operators +, -, *, /,
and %. Your program should be called Calc and work as follows:

• You create an empty Stack to hold intermediate results and then repeatedly
accept input from the user. It doesn't matter whether you use the ArrayStack
or the ListStack we provide, what does matter is that those specific types
appear only once in your program.

• If the user enters a valid integer, you push that integer onto the stack.
• If the user enters a valid operator, you pop two integers off the stack,

perform the requested operation, and push the result back onto the stack.
• If the user enters the symbol ? (that's a question mark), you print the current

state of the stack using its toString method followed by a new line.
• If the user enters the symbol . (that's a dot or full-stop), you pop the top

element off the stack and print it (only the top element, not the entire stack)
followed by a new line.

• If the user enters the symbol ! (that's an exclamation mark or bang), you exit
the program.

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

$ java Calc
?
[]
10
?
[10]
20 30
?
[30, 20, 10]
*
?
[600, 10]
+
?
[610]
.
610
!
$

$ java Calc
? 10 ? 20 30 ? *
? + ? . !
[]
[10]
[30, 20, 10]
[600, 10]
[610]
610
$

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 1: Calculating Stacks (50%)
Note that there are a number of error conditions that your program must deal with
gracefully for full credit. We'll give you two examples for free, you'll have to figure
out any further error conditions for yourself:

• If the user enters blah (or anything else that doesn't make sense for a
calculator as specified above) your program should make it clear that it can't
do anything helpful with that input; but it should not stop at that point.

• If the user requests an operation for which there are not enough operands on
the stack, your program should notify the user of the problem but leave the
stack unchanged; again, it should certainly not stop at that point.

• Of course this means that you'll have to print error messages to the user. Error
messages must be printed to standard error and not to standard out! (Of
course, the regular input and output is done through standard in and standard
out as usual.)

• Furthermore, all error messages must start with the symbol ? (that's a
question mark) and be followed by a new line!

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

$ java Calc
1 2 blah 1.0 3 ?
?Huh?
?Huh?
[3, 2, 1]
+ + ?
[6]
+ + ?
?Not enough arguments.
?Not enough arguments.
[6]
!
$

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 1: Calculating Stacks (50%)
Hints
• Note that we're dealing with integers only (type Integer in Java) so / stands for

integer division and % stands for integer remainder. Both of these should
behave in Calc just like they do in Java. (The details are messy but worth
knowing about, especially regarding modulus.)

• You may find it interesting to read up on Autoboxing and Unboxing in Java.
It's the reason we can use our generic Stack implementations for Integer
objects yet still do arithmetic like we would on regular int variables.

• You'll probably want to use a Scanner object, the methods hasNext and next,
but nothing else for getting the input.

• Only if you're not afraid of learning on your own: You'll be able to use the
matches method of the String class to your advantage when it comes to
checking whether a valid operator was entered. (But you can just as well do it
with a bunch of separate comparisons if you don't want to learn about regular
expressions.)

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 2: Hacking Growable Dequeues (50%)
Your second task is to implement a generic ArrayDequeue class as outlined in
lecture. As is to be expected, ArrayDequeue must implement the Dequeue
interface we provided on github.

• Your implementation must be done in terms of an array that grows by doubling
as needed. It's up to you whether you want to use a basic Java array or the
SimpleArray class you know and love; just in case you prefer the latter, we've
once again included it on the github directory for this assignment. Your initial
array must have a length of one slot only! (Trust us, that's going to make
debugging the "doubling" part a lot easier.)

• Your implementation must support all Dequeue operations except insertion in
(worst-case) constant time; insertion can take longer every now and then
(when you need to grow the array), but overall all insertion operations must be
constant amortized time as discussed in lecture.

• You should provide a toString method in addition to the methods required by
the Dequeue interface. A new dequeue into which 1, 2, and 3 were inserted
using insertBack() should print as [1, 2, 3] while an empty dequeue should
print as []

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 2: Hacking Growable Dequeues (50%)
Testing

• You must write a JUnit 4 test driver for your ArrayDequeue class in a file

TestArrayDequeue.java. Be sure to test all methods and all exceptions as

well. Note that it is not enough to have just one test case for each method;

there are plenty of complex interactions between the methods that should be

covered as well. (And yes, you need to test toString() as well.)

Documentation

• Don't forget to add proper javadoc comments for your ArrayDequeue class.

• Running checkstyle will remind you to do this!

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Bonus Problem (5 pts)

Develop an algebraic specification for the abstract data type Queue. Use

new, empty, enqueue, dequeue, and front (with the meaning of each as

discussed in lecture) as your set of operations. Consider unbounded queues

only.

The difficulty is going to be modelling the FIFO (first-in-first-out) behavior

accurately. You'll probably need at least one axiom with a case distinction

using an if expression; the syntax for this in the Array specification for

example.

Doing this problem without resorting to Google may be rather helpful for the

upcoming midterm. There's no need to submit the problem, but you can

submit it if you wish; just include it at the end of your README file.

Lists and More Lists

Singly Linked Lists
insertFront insertBack

removeBackremoveFront

addme.next = first; first = addme; last.next = addme; addme.next = null

first = first.next; ???

Deque

first

last

null

Node

1
next
prev

Doubly Linked List

Node

2
next
prev

Node

3
next
prev

Node

4
next
prev

null

Very similar to a singly linked list, except each node has a
reference to both the next and previous node in the list

A little more overhead, but significantly increased flexibility: supports
insertFront(), insertBack(), removeFront(), removeBack(),

insertBefore(), removeMiddle()

List v4
public interface Node<T> {

void setValue(T t);
T getValue();

void setNext(Node<T> n);
void setPrev(Node<T> n);

void getNext(Node<T> n);
void getPrev(Node<T> n);

}

public interface List<T> {
boolean empty();
int length();

Node<T> front();
Node<T> back();

void insertFront(Node<T> t);
void insertBack(Node<T> t);

void removeFront();
void removeBack();

}

List v4
public interface Node<T> {

void setValue(T t);
T getValue();

void setNext(Node<T> n);
void setPrev(Node<T> n);

void getNext(Node<T> n);
void getPrev(Node<T> n);

}

public interface List<T> {
boolean empty();
int length();

Node<T> front();
Node<T> back();

void insertFront(Node<T> t);
void insertBack(Node<T> t);

void removeFront();
void removeBack();

}

Nodes are useful,
but is there

someway to hide the
internals?

List v4
public interface Node<T> {

void setValue(T t);
T getValue();

void setNext(Node<T> n);
void setPrev(Node<T> n);

void getNext(Node<T> n);
void getPrev(Node<T> n);

}

public interface List<T> {
boolean empty();
int length();

Node<T> front();
Node<T> back();

void insertFront(Node<T> t);
void insertBack(Node<T> t);

void removeFront();
void removeBack();

}

public interface Position<T> {
// empty on purpose

}

public interface List<T> {
// simplified interface
int length();

Position<T> insertFront(T t);
Position<T> insertBack(T t);
void insertBefore(Position<T> t);
void insertAfter(Position<T> t);

void removeAt(Position<T> p);
}

List v4
public interface Node<T> {

void setValue(T t);
T getValue();

void setNext(Node<T> n);
void setPrev(Node<T> n);

void getNext(Node<T> n);
void getPrev(Node<T> n);

}

public interface List<T> {
boolean empty();
int length();

Node<T> front();
Node<T> back();

void insertFront(Node<T> t);
void insertBack(Node<T> t);

void removeFront();
void removeBack();

}

“I am a position and while you
can hold on to me, you can’t
do anything else with me!”

Inserting at front or back
creates the Position objects.

If you want, you could keep
references to the Position

objects even in the middle of
the list

Pass in a Position, and it will
remove it from the list

public interface Position<T> {
// empty on purpose

}

public interface List<T> {
// simplified interface
int length();

Position<T> insertFront(T t);
Position<T> insertBack(T t);
void insertBefore(Position<T> t);
void insertAfter(Position<T> t);

void removeAt(Position<T> p);
}

List v4
public class NodeList<T> implements List<T>

private static class Node<T> implements Position<T> {
Node<T> next;
Node<T> prev;
T data;
List<T> owner; // reference back to the List it came from

}

private Node<T> front;
private Node<T> back;
private int elements;
public int length() { return this.elements; }

public Position<T> insertFront(T t) {
...

}

public Position<T> insertBack(T t) {
...

}

public void remoteAt(Position<T> p) {
...

}
}

Public Position interface,
but nested (private static) Node Implementation

List v4
public String toString () {

String s ="[";
Node<T> n = this.front;
while (n != null) {
s += n.data.toString();
if (n.next != null) {

s +="";
}
n = n.next;

}
s +="]";
return s;

}

$ java NodeList
[Mike]
[Mike, Peter]
[Kelly, Mike, Peter]
[Kelly, Peter]

public static void main(String[] args) {
List l = new NodeList();
Position a = l.insertFront("Mike");
System.out.println(l);
Position b = l.insertBack("Peter");
System.out.println(l);
Position c = l.insertFront("Kelly");
System.out.println(l);

l.remove(a);
System.out.println(l);

}

How to test the code?
public class NodeList<T> implements List<T> {

private static final class Node<T> implements Position<T> {
Node<T> next;
Node<T> prev;
T data;
List<T> owner;
public T get() { return this.data; }
public void put(T t) { this.data = t; }

}
...
public Position<T> front() throws EmptyException { … }
public Position<T> back() throws EmptyException { … }
public Position<T> insertFront(T t) { … }
public Position<T> insertBack(T t) { … }
public void removeFront() throws EmptyException { … }
public void removeBack() throws EmptyException { … }
public Position<T> insertBefore(Position<T> p, T t)

throws PositionException { … }
public Position<T> insertAfter(Position<T> p, T t)

throws PositionException { … }
public void remove(Position<T> p) throws PositionException { … }
public String toString() { … }

}

How to test the code?
public class NodeList<T> implements List<T> {

private static final class Node<T> implements Position<T> {
Node<T> next;
Node<T> prev;
T data;
List<T> owner;
public T get() { return this.data; }
public void put(T t) { this.data = t; }

}
...
public Position<T> front() throws EmptyException { … }
public Position<T> back() throws EmptyException { … }
public Position<T> insertFront(T t) { … }
public Position<T> insertBack(T t) { … }
public void removeFront() throws EmptyException { … }
public void removeBack() throws EmptyException { … }
public Position<T> insertBefore(Position<T> p, T t)

throws PositionException { … }
public Position<T> insertAfter(Position<T> p, T t)

throws PositionException { … }
public void remove(Position<T> p) throws PositionException { … }
public String toString() { … }

}

TestList.java (1)
import org.junit.Test;
import org.junit.Before;
import static org.junit.Assert.assertEquals;

public class TestList {
List<String> list ;

@Before
public void setupList () {

list = new NodeList<String>();
}

@Test
public void testEmptyList () {

assertEquals ("[]", list.toString());
assertEquals (0, list.length());

}

@Test
public void testInsertFront () {

list.insertFront("Peter");
list.insertFront("Paul");
assertEquals("[Paul, Peter]", list.toString());
assertEquals(2, list.length());

}

TestList.java (2)
@Test
public void testInsertBack () {

list.insertBack("Peter");
list.insertBack("Paul");
assertEquals ("[Peter, Paul]", list.toString ());
assertEquals (2, list.length ());

}

As we add functionality,
testing code will become significantly longer

than the implementation
J

What tests are missing?

List v4
List l = new List<String>();

Position a = l.insertFront(“Mike”);
Position b = l.insertBack(“Peter”);
Position c =
l.insertFront(“Kelly”);

l.removeAt(a);

public interface Position<T> {
// empty on purpose

}

public interface List<T> {
// simplified interface
int length();

Position<T> insertFront(T t);
Position<T> insertBack(T t);

// TODO: void is temporary
void removeAt(Position<T> p);

}

List

front

back

null

Node

Kelly
next
prev

Node

Mike
next
prev

Node

Peter
next
prev

null

a
b

c

List v4
List l = new List<String>();

Position a = l.insertFront(“Mike”);
Position b = l.insertBack(“Peter”);
Position c =
l.insertFront(“Kelly”);

l.removeAt(a);

public interface Position<T> {
// empty on purpose

}

public interface List<T> {
// simplified interface
int length();

Position<T> insertFront(T t);
Position<T> insertBack(T t);

// TODO: void is temporary
void removeAt(Position<T> p);

}

List

front

back

null

Node

Kelly
next
prev

Node

Mike
next
prev

Node

Peter
next
prev

null

a
b

c

This interface protects the
integrity of the List, but is
“weird” in that we can have
references to objects but cant
get their value or do anything
else with them except remove
them

List v5
public interface Position<T> {

T get();
void put(T t);

}

public interface List<T> {
private static class Node<T> implements Position<T> {

Node<T> next;
Node<T> prev;
T data;
List<T> owner;
public T get() { return this.data; }
public void put(T t) { this.data = t; }

}
...

}

List v5
public interface Position<T> {

T get();
void put(T t);

}

public interface List<T> {
private static class Node<T> implements Position<T> {

Node<T> next;
Node<T> prev;
T data;
List<T> owner;
public T get() { return this.data; }
public void put(T t) { this.data = t; }

}
...

}

Hooray, now we can get/set
the value from a Position

Why wouldn’t you want to do it this way?

What if you wanted a UniqueList<T> that only stored unique
items? This would have to be checked in the UniqueList<T>

implementation

List v5 Test
@Test
public void testPositionGet() {

Position<String> p1 = list.insertBack("Peter");
Position<String> p2 = list.insertBack("Paul");
assertEquals("[Peter Paul]", list.toString());
assertEquals("Peter", p1.get());
assertEquals("Paul", p2.get());

}

@Test
public void testPositionPut() {

Position<String> p1 = list.insertBack("Peter");
list.insertBack("Paul");
assertEquals("[Peter Paul]", list.toString());
p1.put("Mary");
assertEquals("Mary", p1.get());
assertEquals("[Mary Paul]", list.toString());

}

What else are we missing?

List v6
public interface List<T> {

...
Position<T> front() throws EmptyListException;

Position<T> back() throws EmptyListException;

Position<T> next(Position<T> p)
throws InvalidPositionException;

Position<T> previous(Position<T> p)
throws InvalidPositionException;

boolean hasNext(Position<T> p)
throws InvalidPositionException;

boolean hasPrevious(Position<T> p)
throws InvalidPositionException;

boolean valid(Position<T> p);
…

}

List v6
public interface List<T> {

...
Position<T> front() throws EmptyListException;

Position<T> back() throws EmptyListException;

Position<T> next(Position<T> p)
throws InvalidPositionException;

Position<T> previous(Position<T> p)
throws InvalidPositionException;

boolean hasNext(Position<T> p)
throws InvalidPositionException;

boolean hasPrevious(Position<T> p)
throws InvalidPositionException;

boolean valid(Position<T> p);
…

}

Why do we put next() and prev() into the list and not Position?

For more complex data structures, like trees or graphs,
next() and prev() will be more complicated

List v6 Iterating
// Very C++ like
Position<String> current = list.front();
Position<String> last = list.back();
while (current != last) {

// do whatever we need to do at the current position
current = list.next(current);

}

// More Java-like
Position<String> current = list.front();
for (;;) {

// do whatever we need to do at the current position
if (list.hasNext(current)) {

current = list.next(current);
} else {

break;
}

}

// Very Java-like
Position<String> current = list.front();
while (list.valid(current)) {

// do whatever we need to do at the current position
current = list.next(current);

}

Iterator Interface
public interface Iterator<T> {

boolean valid();
void next(); // next element, not necessarily “next”
T get(); // get ok, but put may break invariants

}

public interface List<T> {
...
Iterator<T> forwardIterator();
Iterator<T> backwardIterator();
...

}

Iterator<String> i = list.forwardIterator();
while (i.valid()) {

String e = i.get();
// do whatever with the element e
i.next();

}

Iterator Interface
private static class NodeListIterator<T> implements
Iterator<T> {

private Node<T> current;
private boolean forward;

NodeListIterator(Node<T> start, boolean forward) {
this.current = start;
this.forward = forward;

}

public boolean valid() {
return this.current != null;

}

public void next() {
this.current = this.forward ? this.current.next

: this.current.prev;
}

public T get() {
return this.current.get();

}
}

Iterator Interface
private static class NodeListIterator<T> implements
Iterator<T> {

private Node<T> current;
private boolean forward;

NodeListIterator(Node<T> start, boolean forward) {
this.current = start;
this.forward = forward;

}

public boolean valid() {
return this.current != null;

}

public void next() {
this.current = this.forward ? this.current.next

: this.current.prev;
}

public T get() {
return this.current.get();

}
}

Ternary operator:

If (this.forward) {
this.current = this.current.next;

} else {
this.current = this.current.prev;

}

Iterator Interface
public Iterator<T> forwardIterator() {

return new NodeListIterator<T>(this.front, true);
}

public Iterator<T> backwardIterator() {
return new NodeListIterator<T>(this.back, false);

}

@Test
public void testForwardIterator() {

list.insertBack("Peter");
list.insertBack("Paul");
list.insertBack("Mary");
String[] expected = {"Peter", "Paul", "Mary"};
int current = 0;
Iterator<String> i = list.forwardIterator();
while (i.valid()) {

String e = i.get();
assertEquals(expected[current], e);
i.next();
current += 1;

}
assertEquals(3, current);

}

Iterator Interface
public Iterator<T> forwardIterator() {

return new NodeListIterator<T>(this.front, true);
}

public Iterator<T> backwardIterator() {
return new NodeListIterator<T>(this.back, false);

}

@Test
public void testBackwardIterator() {

list.insertBack("Peter");
list.insertBack("Paul");
list.insertBack("Mary");
String[] expected = {"Mary", "Paul", "Peter"};
int current = 0;
Iterator<String> i = list.backwardIterator();
while (i.valid()) {

String e = i.get();
assertEquals(expected[current], e);
i.next();
current += 1;

}
assertEquals(3, current);

}

Java Iterators
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html

Java Iterators
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html

Will become even more important for more complex data structures to
simplify certain operations like printing every element in sorted order

Java Iterable
https://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

List v7
public interface List<T> extends Iterable<T> {

...
private static class NodeListIterator<T>

implements Iterator<T> {
...

}

Iterator<String> i = list.iterator();
while (i.hasNext()) {

String e = i.next();
// do something with element e

}

for (String e: list) {
// do something with element e

}

Nulls and Sentinels

Living in a null world

List

front

back

null

List

front

back

Node

Mike
next
prev

null

null

List

front

back

null

Node

Mike
next
prev

Node

Peter
next
prev

null

Living in a null world

List

front

back

null

List

front

back

Node

Mike
next
prev

null

null

List

front

back

null

Node

Mike
next
prev

Node

Peter
next
prev

null

public Position <T> insertBack(T t) {
...
if (this.back != null) {

this.back.next = n;
}
if (this.front == null) {

this.front = n;
}
...

}

public Position <T> insertFront(T t) {
...
if (this.front != null) {

this.front.prev =n;
}
if (this.back==null) {

this.back = n;
}
...

}

public void removeAt(Position<T> p) {
...
if (n.next != null) { n.next.prev = n.prev; }
if (n.prev != null) { n.prev.next = n.next; }
...

}

List

first

last

null

Node

f
next
prev

Doubly Linked List with Sentinels

Node

b
next
prev

null

An “empty” list is initialized with the special front and
back sentinels

List

first

last

null

Node

f
next
prev

Doubly Linked List with Sentinels

Node

1
next
prev

Node

b
next
prev

null

The user data is placed in between sentinels

List

first

last

null

Node

f
next
prev

Doubly Linked List with Sentinels

Node

1
next
prev

Node

2
next
prev

Node

b
next
prev

null

For the cost of a tiny bit of extra memory, the code gets significantly simpler!

Next Steps

1. Work on HW3

2. Check on Piazza for tips & corrections!

