
CS 600.226: Data Structures
Michael Schatz

Sept 21 2018
Lecture 10. Stacks and JUnit

Agenda
1. Review HW2

2. Introduce HW3

3. Recap on Stacks

4. Queues

5. Deques

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!
Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview
The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use Checkstyle with the correct configuration file
from Github!

http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Agenda
1. Review HW2

2. Introduce HW3

3. Recap on Stacks

4. Queues

5. Dequeues

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Assignment 3: Assorted Complexities

Out on: September 21, 2018
Due by: September 28, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 60% (where applicable)
Solution Design and README 10% (where applicable)
Style 10% (where applicable)
Testing 10% (where applicable)

Overview
The third assignment is mostly about sorting and how fast things go. You
will also write yet another implementation of the Array interface to help you
analyze how many array operations various sorting algorithms perform.

Note: The grading criteria now include 10% for unit testing. This refers to
JUnit 4 test drivers, not some custom test program you hacked. The
problems (on this and future assignments) will state whether you are
expected to produce/improve test drivers or not.

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 1: Arrays with Statistics (30%)

Your first task for this assignment is to develop a new kind of Array
implementation that keeps track of how many read and write operations

have been performed on it. Check out the Statable interface first,

reproduced here in compressed form (be sure to use and read the full

interface available in github):

This describes what we expect of an object that can collect statistics about

itself. After a Statable object has been "in use" for a while, we can

check how many read and write operations it has been asked to perform.

We can also tell it to "forget" what has happened before and start counting

both kinds of operations from zero again.

public interface Statable {
void resetStatistics();
int numberOfReads();
int numberOfWrites();

}

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

You need to write classes implementing BubbleSort and
InsertionSort for this problem. Just like our example algorithms, your
classes have to implement the SortingAlgorithm interface.

All of this should be fairly straightforward once you get used to the
framework. Speaking of the framework, the way you actually "run" the
various algorithms is by using the PolySort.java program we've provided
as well. You should be able to compile and run it without yet having written
any sorting code yourself.

Here's how:

$ java PolySort 4000 <random.data

Algorithm Sorted? Size Reads Writes Seconds

Null Sort false 4,000 0 0 0.000007
Gnome Sort true 4,000 32,195,307 8,045,828 0.243852
Selection Sort true 4,000 24,009,991 7,992 0.252085

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 3: Analysis of Selection Sort (20%)

Your final task for this assignment is to analyze the following selection sort
algorithm theoretically (without running it) in detail (without using O-
notation).

Here's the code, and you must analyze exactly this code (the line numbers
are given so you can refer to them in your writeup for this problem):

1: public static void selectionSort(int[] a) {
2: for (int i = 0; i < a.length - 1; i++) {
3: int min = i;
4: for (int j = i + 1; j < a.length; j++) {
5: if (a[j] < a[min]) {
6: min = j;
7: }
8: }
9: int t = a[i]; a[i] = a[min]; a[min] = t;

10: }
11: }

Introducing JUnit

TestSimpleArray.java
import org.junit.Test;
import org.junit.BeforeClass;
import static org.junit.Assert.assertEquals;
public class TestSimpleArray {

static Array<String> shortArray;

@BeforeClass
public static void setupArray() throws LengthException {

shortArray = new SimpleArray<String>(10, "Bla");
}

@Test
public void newArrayLengthGood() throws LengthException {

assertEquals(10, shortArray.length());
}

@Test
public void newArrayInitialized() throws LengthException, IndexException {

for (int i = 0; i < shortArray.length(); i++) {
assertEquals("Bla", shortArray.get(i));

}
}

@Test(expected=IndexException.class)
public void IndexDetected() throws IndexException {

shortArray.put(shortArray.length(), "Paul");
}

}

@BeforeClass causes
the method to be run
once before any of the
test methods in the
class

Check the results with assertEquals, or listing the expected exception

Running JUnit
// Step 0: Download junit-4.12.jar and hamcrest-core-1.3.jar
// Jar files are bundles of java classes ready to run

// Step 1: Compile your code as usual and checkstyle
$ javac –Xlint:all SimpleArray.java
$ check SimpleArray.java

// Step 2: Compile tests, but not checkstyle for these :)
$ javac -cp .:junit-4.12.jar -Xlint:all TestSimpleArray.java

// Step 3: Run Junit on your TestProgram. Notice that
org.junit.runner.JUnitCore is the main code we run, and
TestSimpleArray is just a parameter to it
$ java -cp .:junit-4.12.jar:hamcrest-core-1.3.jar \

org.junit.runner.JUnitCore TestSimpleArray
JUnit version 4.12
...
Time: 0.011

OK (3 tests)

// Hooray, everything is okay!
-cp sets the class path. This tells
Java where to find the relevant
code needed for compiling and
running

Hint: save commands to a file!
chmod +x tester.sh
./tester.sh

Guidelines

1. Every Method should be tested for
correct outputs
• Try simple and complex examples (different lengths of

arrays, etc)
• Private methods can be tested implicitly, but the entire

public interface should be evaluated

2. Every exception and error condition
should also be tested
• This is how the ADT contract will be enforced

3. Write the test cases first, that way
you will know when you are done

Stacks

Stacks
Stacks are very simple but surprisingly
useful data structures for storing a
collection of information
•Any number of items can be stored, but you
can only manipulate the top of the stack:

• Push: adds a new element to the top
• Pop: takes off the top element
• Top: Lets you peek at top element’s

value without removing it from stack

Many Applications
• In hardware call stack
• Memory management systems
• Parsing arithmetic instructions:

((x+3) / (x+9)) * (42 * sin(x))
• Back-tracing, such as searching within a maze

Stack Interface
public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

}

How would you implement
this interface?

Why?

ListStack vs ArrayStack

ListStack

head

Node

value
next

Node

value
next

Node

value
next

Node

value
next

null

ArrayStack

int [] arr
int top

ArrayStack Growing
If the array size starts at 1, how expensive will it be to grow to 1M if we copy one

element at a time?

1

2

6

5

4

3

1M push()s will require a total of

1+2+3+4+5+6+…+999,999 copies

= 0.5MM steps!

O(n2) performance L

ArrayStack Doubling
If the array size starts at 1, how expensive will it be to grow to 1M?

How many doublings will it take?
How many times will an item be copied?

1

2

32

16

8

4

How many rounds of doubling?

lg(1M) = 20

How many total copies?

1+2+4+8+16+32+…+512k

Whats the total runtime for n pushes?

O(n) J

= 1M12+102+1002+10002+100002 +

Sums of Powers of Two

1
+ 2
+ 4
+ 8

+ 16
+ 32
+ 64

…
+ 524,288

20
+ 21
+ 22
+ 23
+ 24
+ 25
+ 26

…
+ 219

0000 0000 0000 0000 0001
+ 0000 0000 0000 0000 0010
+ 0000 0000 0000 0000 0100
+ 0000 0000 0000 0000 1000
+ 0000 0000 0000 0001 0000
+ 0000 0000 0000 0010 0000
+ 0000 0000 0000 0100 0000

…

+ 1000 0000 0000 0000 0000

1111 1111 1111 1111 1111220 - 11,048,576-1

1,048,575

Amortized Analysis
The amortized cost per operation for a sequence of n operations

is the total cost of the operations divided by n

Example: If we have 100 operations at cost 1, followed by one operation at
cost 100, the amortized cost per operation is 200/101 < 2.
Note the worst case operation analysis yields 100

Amortized cost analysis is helpful because many important data structures
occasionally incur a large cost as they perform some kind of rebalancing or
improvement of their internal state, but those expensive operations cannot
occur too frequently. In this case, amortized analysis can give a much tighter
bound on the true cost of using the data structure than a standard worst-case-
per-operation bound.

Note that even though the definition of amortized cost is simple,
analyzing it will often require some thought.

http://www.cs.cmu.edu/afs/cs/academic/class/15451-
s10/www/lectures/lect0203.pdf

ListStack vs ArrayStack

ListStack

head

Node

value
next

Node

value
next

Node

value
next

Node

value
next

null

ArrayStack

int [] arr
int top

Would you ever use lists and stacks together?

Unrolled Linked List

Queues

Stacks versus Queues

LIFO: Last-In-First-Out
Add to top +

Remove from top

FIFO: First-In-First-Out
Add to back +

Remove from front

Queue Applications

Whenever a resource is shared among
multiple jobs:
• accessing the CPU
• accessing the disk
• Fair scheduling (ticketmaster, printing)

Whenever data is transferred
asynchronously (data not necessarily
received at same rate as it is sent):
• Sending data over the network
• Working with UNIX pipes:

• ./slow | ./fast | ./medium

Also many applications to searching
graphs (see 3-4 weeks) FIFO: First-In-First-Out

Add to back +
Remove from front

Queue ADT

Bonus question
on Assignment 4

dequeue()

front()

enqueue()

(back)

1

2

3

…

…

Queue Interface
public interface Queue<T> {

/**
* Test if queue is empty.
* @return True if the queue is empty
*/
boolean empty();

/**
* Access front element of queue.
* @return Top element of the queue.
* @throws EmptyException for empty queue.
*/
T front() throws EmptyException;

/**
* Remove element at front of queue.
* @throws EmptyException for empty queue.
*/
void dequeue() throws EmptyException;

/**
* Insert new element at back of queue.
* @param t Element to enqueue.
*/
void enqueue(T t);

}

dequeue()

front()

enqueue()

(back)

1

2

3

…

…

ListQueue vs ArrayQueue

ListQueue

first

Node

value
next

Node

value
next

Node

value
next

Node

value
next

null

ArrayQueue

int [] arr
int top

last

Many of the same tradeoffs as ListStack vs ArrayStack

List Queue

Queue

first

last

Node

3
next

Node

2
next

Node

1
next

null

Where should we enqueue?
Is the next node to dequeue 1 or 3?

Enqueue first, Dequeue last

Queue

first

last

Node

3
next

Node

2
next

Node

1
next

null

front()

How to add a new element at first?

Enqueue first, Dequeue last

Queue

first

last

Node

3
next

Node

2
next

Node

1
next

null

Node

4
next

addme

front()

Enqueue first, Dequeue last

Queue

first

last

Node

3
next

Node

2
next

Node

1
next

null

Node

4
next

addme

front()

Enqueue first, Dequeue last

Queue

first

last

Node

3
next

Node

2
next

Node

1
next

null

Node

4
next

addme

front()

Enqueue first, Dequeue last

Queue

first

last

Node

4
next

Node

3
next

Node

2
next

Node

1
next

null

front

Enqueue is an O(1) operation J

Enqueue first, Dequeue last

Queue

first

last

Node

4
next

Node

3
next

Node

2
next

Node

1
next

null

front

How to remove an element at front?

Dequeue at last

Queue

first

last

Node

4
next

Node

3
next

Node

2
next

Node

1
next

null

front

Dequeue at last

Queue

first

last

Node

4
next

Node

3
next

Node

2
next

Node

1
next

null

front
???

Dequeue at last

Queue

first

last

Node

4
next

Node

3
next

Node

2
next

Node

1
next

null

Oops, just made dequeue an O(n) operation
How might you address this?

front
???

Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Lets try inserting at last and removing from first

Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Node

4
next

addme

Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Node

4
next

addme

Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Node

4
next

addme

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue is an O(1) operation J

Enqueue last, Dequeue first

front()

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Now try dequeueing at first

Enqueue last, Dequeue first

front()

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue last, Dequeue first

front()

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue last, Dequeue first

front()

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue last, Dequeue first

oldfront

front()

Enqueueing and dequeue are O(1) J

Careful with initial enqueue/dequeue
as everything will be null

Queue

first

last

null

Enqueue sequence

front()

queue.enqueue(1);

Queue

first

last

Node

1
next

null

front()

queue.enqueue(1);
queue.enqueue(2);

Enqueue sequence

Queue

first

last

Node

1
next

Node

2
next

null

Enqueue sequence

front()

queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

Enqueue sequence

front()

queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);
queue.enqueue(4);

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

All 4 items queued up and ready to be dequeued starting with 1

Enqueue sequence

front()

Queue

first

last

Node

2
next

Node

3
next

Node

4
next

null

Dequeue sequence

front()

queue.dequeue();
queue.dequeue();

Queue

first

last

Node

3
next

Node

4
next

null

Dequeue sequence

front()

queue.dequeue();
queue.dequeue();
queue.dequeue();

Queue

first

last

Node

4
next

null

Dequeue sequence

front()

queue.dequeue();
queue.dequeue();
queue.dequeue();
queue.dequeue();

Queue

first

last

null

Dequeue sequence

front()

queue.dequeue();
queue.dequeue();
queue.dequeue();
queue.dequeue();

ArrayQueue

ArrayQueue

int [] arr
int top = 0

Enqueue into the first open slot,
use array doubling to grow array as needed

ArrayQueue

ArrayQueue

int [] arr
int top = 1

1

queue.enqueue(1);

ArrayQueue

ArrayQueue

int [] arr
int top = 2

1 2

queue.enqueue(1);
queue.enqueue(2);

ArrayQueue

ArrayQueue

int [] arr
int top = 3

1 2 3

queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);

ArrayQueue

ArrayQueue

int [] arr
int top = 4

1 2 3 4

queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);
queue.enqueue(4);

ArrayQueue

ArrayQueue

int [] arr
int top = 4

1 2 3 4

queue.dequeue()

ArrayQueue

ArrayQueue

int [] arr
int top = 4

1 2 3 4

queue.dequeue()

ArrayQueue

ArrayQueue

int [] arr
int top = 3

2 3 4

Whats wrong with copying?
How could we fix it?

ArrayQueue

ArrayQueue

int [] arr
int f = 0
int b = 0

Use a separate index for the front and back of the queue

We know the queue is empty when f == b

f b

ArrayQueue

ArrayQueue

int [] arr
int f = 0
int b = 1

1

queue.enqueue(1);

f b

ArrayQueue

ArrayQueue

int [] arr
int f = 0
int b = 2

1 2

queue.enqueue(1);
queue.enqueue(2);

f b

ArrayQueue

ArrayQueue

int [] arr
int f = 0
int b = 3

1 2 3

queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);

f b

ArrayQueue

ArrayQueue

int [] arr
int f = 0
int b = 4

1 2 3 4

queue.enqueue(1);
queue.enqueue(2);
queue.enqueue(3);
queue.enqueue(4);

f b

Notice: queuelen = b - f

ArrayQueue

ArrayQueue

int [] arr
int f = 1
int b = 4

1 2 3 4

queue.dequeue()

f b

Hooray, enqueue and dequeue are O(1) J

We don’t even need to clear out the old front of the list

ArrayQueue

ArrayQueue

int [] arr
int f = 13
int b = 17

13 14 15 16

f b

What happens when we get to the end of the array?
Queuelen = 17-13 = 4 J

ArrayQueue

ArrayQueue

int [] arr
int f = 13
int b = 17

13 14 15 16

f b

Should we double the array?

queue.enqueue(17);

Nah, the array is mostly empty. Lets use it up first!

ArrayQueue

ArrayQueue

int [] arr
int f = 13
int b =1

17 13 14 15 16

fb

queue.enqueue(17);

ArrayQueue

ArrayQueue

int [] arr
int f = 13
int b = 2

17 18 13 14 15 16

fb

queue.enqueue(17);
queue.enqueue(18);

ArrayQueue

ArrayQueue

int [] arr
int f = 14
int b = 2

17 18 14 15 16

fb

queue.dequeue()

ArrayQueue

ArrayQueue

int [] arr
int f = 15
int b = 2

17 18 15 16

fb

queue.dequeue()
queue.dequeue()

ArrayQueue

ArrayQueue

int [] arr
int f = 16
int b = 2

17 18 16

fb

queue.dequeue()
queue.dequeue()
queue.dequeue()

ArrayQueue

ArrayQueue

int [] arr
int f = 0
int b = 2

17 18

f b

queue.dequeue()
queue.dequeue()
queue.dequeue()
queue.dequeue()

How can we implement the wrap around?

Modular Arithmetic
m = a % b means to set m to be the remainder when dividing a by b

m is guaranteed to fall between 0 and b
ShowMod.java

public class ShowMod {
public static void main(String [] args){
System.out.println("i\ti%2\ti%5\ti%10\ti%16");
for (int i = 0; i < 20; i++) {
System.out.println(i + "\t" +

i % 2 + "\t" +
i % 5 + "\t" +
i % 10 + "\t" +
i % 16);

}
}

}

$ java Mod
i i%2 i%5 i%10 i%16
0 0 0 0 0
1 1 1 1 1
2 0 2 2 2
3 1 3 3 3
4 0 4 4 4
5 1 0 5 5
6 0 1 6 6
7 1 2 7 7
8 0 3 8 8
9 1 4 9 9
10 0 0 0 10
11 1 1 1 11
12 0 2 2 12
13 1 3 3 13
14 0 4 4 14
15 1 0 5 15
16 0 1 6 0
17 1 2 7 1
18 0 3 8 2
19 1 4 9 3

back = (back + 1) % arr.length

How do we compute length or
know when it is full?

Use a separate counter.
When array is totally full,

double the size and copy into
new array starting at 0

Stacks versus Queues

LIFO: Last-In-First-Out
Add to top +

Remove from top

FIFO: First-In-First-Out
Add to back +

Remove from front

Stacks versus Queues

LIFO: Last-In-First-Out
Add to top +

Remove from top

FIFO: First-In-First-Out
Add to back +

Remove from front

Dequeues
aka Doubled-Ended Queue

aka Deques
aka “Decks”

Dequeues

front back

insertFront() insertBack()

removeBack()removeFront()

Dynamic Data Structure used for storing sequences of data
• Insert/Remove at either end in O(1)

• If you exclusively add/remove at one end, then it becomes a stack

• If you exclusive add to one end and remove from other, then it
becomes a queue

• Many other applications:
• browser history: deque of last 100 webpages visited

Dequeue Support

Many common programming languages have builtin support
•Offers most flexibility on how users may choose to use data structure

Stack or queue from one data structure

•This is what you should use for “production” code …
… but still useful to implement your own so you fully understand the
limitations J

Dequeue Interface
public interface Dequeue<T> {

boolean empty();
int length();

T front() throws EmptyException;
T back() throws EmptyException;

void insertFront(T t);
void insertBack(T t);

void removeFront() throws EmptyException;
void removeBack() throws EmptyException;

}

How would you implement the underlying storage?

Why?

ArrayDequeue

ListDeque

first

Node

value
next

Node

value
next

Node

value
next

Node

value
next

null

ArrayDeque

int [] arr
int f
int b

last

Many of the same tradeoffs as ListQueue vs ArrayQueue

ArrayDequeue

ArrayDeque

int [] arr
int f = 0
int b = 0

deque = new ArrayDequeue();

f b

ArrayDequeue

ArrayDeque

int [] arr
int f = 0
int b = 1

1

deque = new ArrayDequeue();
deque.insertBack(1);

f b

ArrayDequeue

ArrayDeque

int [] arr
int f = 0
int b = 2

1 2

deque = new ArrayDequeue();
deque.insertBack(1);
deque.insertBack(2);

f b

ArrayDequeue

ArrayDeque

int [] arr
int f = 0
int b = 2

1 2

deque = new ArrayDequeue();
deque.insertBack(1);
deque.insertBack(2);
deque.insertFront(3);

f b

ArrayDequeue

ArrayDeque

int [] arr
int f = 16
int b = 2

1 2 3

deque = new ArrayDequeue();
deque.insertBack(1);
deque.insertBack(2);
deque.insertFront(3);

fb

ArrayDequeue

ArrayDeque

int [] arr
int f = 15
int b = 2

1 2 4 3

deque = new ArrayDequeue();
deque.insertBack(1);
deque.insertBack(2);
deque.insertFront(3);
deque.insertFront(4);

fb

Inserting at front usually means subtract,
but gets tricky when we wrap around.

f = (f-1) % arr.length; // depends on how
this is implemented for negative numbers

f = (f -1+arr.length) % arr.length; // does the
right thing

ListDequeue

ListDeque

first

Node

value
next

Node

value
next

Node

value
next

Node

value
next

null

last

Hint: This wont quite work as shown

Will discuss next time J

Next Steps

1. Work on HW3

2. Check on Piazza for tips & corrections!

