
CS 600.226: Data Structures
Michael Schatz

Sept 21 2018
Lecture 10. Stacks and JUnit

Agenda
1. Review HW2

2. Introduce HW3

3. Recap on Stacks

4. Queues

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!
Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview
The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use Checkstyle with the correct configuration file
from Github!

http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 1: Revenge of Unique (30%)
You wrote a small Java program called Unique for Assignment 1. The
program accepted any number of command line arguments (each of which
was supposed to be an integer) and printed each unique integer it
received back out once, eliminating duplicates in the process.

For this problem, you will implement a new version of Unique called
UniqueRevenge with two major changes:

• First, you are no longer allowed to use Java arrays (nor any other
advanced data structure), but you can use our Array interface and our
SimpleArray implementation from lecture (also available on github)

• Second, you're going to modify the program to read the integers from
standard input instead of processing the command line.

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 2: Flexible Arrays (20%)
Develop an algebraic specification for the abstract data type

FlexibleArray which works like the existing Array ADT for the most

part except that both its lower and its upper index bound are set when

the array is created. The lower as well as upper bound can be any integer,

provided the lower bound is less than or equal the upper bound.

Write up the specification for FlexibleArray in the format we used in lecture

and comment on the design decisions you had to make. Also, tell us what

kind of array you prefer and why.

Hints
• A FlexibleArray for which the lower bound equals the upper bound has

exactly one slot.

• Your FlexibleArray is not the Array ADT we did in lecture; it doesn't

have to support the exact same set of operations.

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 3: Sparse Arrays (35%)
A sparse array is an array in which relatively few positions have values
that differ from the initial value set when the array was created. For
sparse arrays, it is wasteful to store the value of all positions explicitly
since most of them never change and take the default value of the
array. Instead, we want to store positions that have actually been
changed.

For this problem, write a class SparseArray that implements the Array
interface we developed in lecture (the same interface you used for
Problem 1 above). Do not modify the Array interface in any
way! Instead of using a plain Java array like we did for SimpleArray,
your SparseArray should use a linked list of Node objects to store
values, similar to the ListArray from lecture (and available in github).
However, your nodes no longer store just the data at a certain position,
they also store the position itself!

https://github.com/schatzlab/datastructures2018/tree/master/lectures/05.Iterators

Introduction to Checkstyle
http://checkstyle.sourceforge.net/

$ java -jar datastructures2018/resources/checkstyle-8.12-all.jar \
-c datastructures2018/resources/cs226_checks.xml HelloWorld.java

Add to bashrc:
alias check=‘java -jar datastructures2018/resources/checkstyle-8.12-all.jar \

-c datastructures2018/resources/cs226_checks.xml’

Agenda
1. Review HW2

2. Introduce HW3

3. Recap on Stacks

4. Queues

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Assignment 3: Assorted Complexities

Out on: September 21, 2018
Due by: September 28, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 60% (where applicable)
Solution Design and README 10% (where applicable)
Style 10% (where applicable)
Testing 10% (where applicable)

Overview
The third assignment is mostly about sorting and how fast things go. You
will also write yet another implementation of the Array interface to help you
analyze how many array operations various sorting algorithms perform.

Note: The grading criteria now include 10% for unit testing. This refers to
JUnit 4 test drivers, not some custom test program you hacked. The
problems (on this and future assignments) will state whether you are
expected to produce/improve test drivers or not.

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 1: Arrays with Statistics (30%)

Your first task for this assignment is to develop a new kind of Array
implementation that keeps track of how many read and write operations

have been performed on it. Check out the Statable interface first,

reproduced here in compressed form (be sure to use and read the full

interface available in github):

This describes what we expect of an object that can collect statistics about

itself. After a Statable object has been "in use" for a while, we can

check how many read and write operations it has been asked to perform.

We can also tell it to "forget" what has happened before and start counting

both kinds of operations from zero again.

public interface Statable {
void resetStatistics();
int numberOfReads();
int numberOfWrites();

}

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 1: Arrays with Statistics (30%)

You need to develop a class StatableArray that extends our dear
old SimpleArray and also implements the Statable interface; yes,
both at the same time. When a StatableArray is created, you initialize
internal counters to keep track of the number of read and write operations
it has been asked to perform so far; obviously both counts start at zero.
Each time an operation is performed on the StatableArray object,
you need to increment the relevant counter by one and invoke the
actual operation in the super class using Java's super keyword.

Don't forget that your constructor for StatableArray will also have to
invoke the SimpleArray constructor!

Consider a freshly constructed StatableArray object. It would return 0
for both numberOfReads and numberOfWrites. Now imagine we call
the length operation followed by three calls to the get operation. At this
point, our object would return 4 for numberOfReads but still 0 for
numberOfWrites. If we now call the put operation twice, the object
would return 2 for numberOfWrites but still 4 for numberOfReads.

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 1: Arrays with Statistics (30%)

You need to write JUnit 4 test cases for StatableArray. Your focus
should be on the Statable aspect of the class, but you will need to call
Array methods to trigger the various possible outcomes. Call the file with
your test cases StatableArrayTest.java please.

Hints
• You can get by with the basic @Before and @Test annotations

provided by JUnit, nothing fancier than that is required.

• Since the Statable interface doesn't use exceptions, you don't have to
test any preconditions either; remember that your focus is on Statable
and not on Array for which (presumably) some other test exists.

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

Your second task for this assignment is to explore some of the basic
sorting algorithms and their analysis. All of these algorithms are quadratic
in terms of their asymptotic performance, but they nevertheless differ in
their actual performance.

We'll focus on the following three algorithms:

• Bubble Sort (with the "stop early if no swaps" extension)
• Selection Sort
• Insertion Sort

The github repo contains a basic framework for evaluating sorting
algorithms.

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

The github repo contains a basic framework for evaluating sorting
algorithms. You'll need a working StatableArray class from Problem 1,
and you'll need to understand the following interface as well (again
compressed, be sure to to use and read the full interface:

public interface SortingAlgorithm<T extends Comparable<T>> {
void sort(Array<T> array);
String name();

}

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

Let's look at the simple stuff first:

• An object is considered an algorithm suitable for sorting in this
framework if (a) we can ask it to sort a given Array and (b) we can ask it
for its name (e.g. "Insertion Sort").

• The more complicated stuff is at the top: The use of extends inside
the angle brackets means that any type T we want to sort must
implement the interface Comparable as well. It obviously can't just be
any old type, it must be a type for which the expression "a is less than
b" actually makes sense. Using Comparable in this form is Java's way
of saying that we can order the objects; you should definitely read up
on the details here!

• As an example for all this, we have provided an implementation of
SelectionSort on Piazza already. (Actually, there are also two other
algorithms, NullSort and GnomeSort, just so you start out with a few to
run right away.)

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

You need to write classes implementing BubbleSort and
InsertionSort for this problem. Just like our example algorithms, your
classes have to implement the SortingAlgorithm interface.

All of this should be fairly straightforward once you get used to the
framework. Speaking of the framework, the way you actually "run" the
various algorithms is by using the PolySort.java program we've provided
as well. You should be able to compile and run it without yet having written
any sorting code yourself.

Here's how:

$ java PolySort 4000 <random.data

Algorithm Sorted? Size Reads Writes Seconds

Null Sort false 4,000 0 0 0.000007
Gnome Sort true 4,000 32,195,307 8,045,828 0.243852
Selection Sort true 4,000 24,009,991 7,992 0.252085

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

This will read the first 4000 strings from the file random.data and sort
them using all available algorithms. As you can see, the program
checks if the algorithm actually worked (Sorted?) and reports how many
operations of the underlying StatableArray were used in order to perform
the sort (Reads, Writes). Finally, the program also prints out long it took to
sort the array (Seconds) but that number will vary widely across machines
so you can really only use it for relative comparisons on the machine
actually running the experiment.

However, the main point of all this is not the coding work. Instead, the
main point is to evaluate and compare the sorting algorithms on different
sets of data. We've provided three sets of useful test data on github and
you can use the command line argument to vary how much of it is used
(thereby changing the size of the problem). You should try to quantify how
the various algorithms differ and explain why they differ as well (i.e. what
about a given algorithm makes it better or worse than another one for a
given data set).

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 2: All Sorts of Sorts (50%)

In your README file you should describe the series of experiments
you ran, what data you collected, and what your conclusions about
the performance of these algorithms are.

Some ideas for what to address:

• Does the actual running time correspond to the asymptotic complexity
as you would expect?

• What explains the practical differences between these algorithms?

• Does it matter what kind of data (random, already sorted in ascending
order, sorted in descending order) you are sorting?

• Just to be clear: Yes, we'll need the code, and it should be up to
the usual standards. But the "report" you put in your README is
just as important as the code!

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 3: Analysis of Selection Sort (20%)

Your final task for this assignment is to analyze the following selection sort
algorithm theoretically (without running it) in detail (without using O-
notation).

Here's the code, and you must analyze exactly this code (the line numbers
are given so you can refer to them in your writeup for this problem):

1: public static void selectionSort(int[] a) {
2: for (int i = 0; i < a.length - 1; i++) {
3: int min = i;
4: for (int j = i + 1; j < a.length; j++) {
5: if (a[j] < a[min]) {
6: min = j;
7: }
8: }
9: int t = a[i]; a[i] = a[min]; a[min] = t;

10: }
11: }

Assignment 3: Due Friday Sept 28 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment03/README.md

Problem 3: Analysis of Selection Sort (20%)

You need to determine exactly how many comparisons C(n) and
assignments A(n) are performed by this implementation of selection
sort in the worst case. Both of those should be polynomials of degree 2
since you know that the asymptotic complexity of selection sort is O(n^2).
(As usual we refer to the size of the problem, which is the length of the
array to be sorted here, as "n" above.)

Important:
• Don't just state the polynomials, your writeup has to explain how you

derived them! Anyone can google for the answer, but you need to
convince us that you actually did the work!

Introducing JUnit

Introducing JUnit

JUnit According to Peter J
So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

• For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing
code as actual program code, and so the principles you use to make
regular code easier to read (splitting things into methods and classes, etc.)
should also apply to test code.

• Also, JUnit allows you to run all your test cases every time, it doesn’t
stop at the first failing test case like assert does. This way you can get
feedback about multiple failed tests all at once.

• Finally, lots of companies expect graduates to have some experience
with testing frameworks, so why not pick it up now? Note that testing is
not just for software developers anymore, increasingly people working
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

So it’s a really useful skill to have on your list.

JUnit According to Peter J
So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

• For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing
code as actual program code, and so the principles you use to make
regular code easier to read (splitting things into methods and classes, etc.)
should also apply to test code.

• Also, JUnit allows you to run all your test cases every time, it doesn’t
stop at the first failing test case like assert does. This way you can get
feedback about multiple failed tests all at once.

• Finally, lots of companies expect graduates to have some experience
with testing frameworks, so why not pick it up now? Note that testing is
not just for software developers anymore, increasingly people working
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

So it’s a really useful skill to have on your list.

From HW3 on out, when we say
“write test cases”

as part of an assignment, we mean
“write JUnit 4 test cases”

as described here.

Use it!
For JUnit 4 we import the “Test” annotation from the framework with:

and then write our test methods using that annotation:

• Any methods tagged with @Test annotation will be run by JUnit
as a test case

• Use assertEquals and other keywords to check the returned
results match expected results. Make sure to test both positive
(correct value, correct length, etc) and negative results
(exceptions correctly thrown, other error conditions detected)

• Write code, compile, and then run the special driver program to
generate a report

import org.junit.Test;
import static org.junit.Assert.assertEquals;

@Test
public void testThisAndThat() {

//set up thisAndThat
assertEquals(thisAndThat.method() == expectedResult);

}

TestSimpleArray.java
import org.junit.Test;
import org.junit.BeforeClass;
import static org.junit.Assert.assertEquals;
public class TestSimpleArray {

static Array<String> shortArray;

@BeforeClass
public static void setupArray() throws LengthException {

shortArray = new SimpleArray<String>(10, "Bla");
}

@Test
public void newArrayLengthGood() throws LengthException {

assertEquals(10, shortArray.length());
}

@Test
public void newArrayInitialized() throws LengthException, IndexException {

for (int i = 0; i < shortArray.length(); i++) {
assertEquals("Bla", shortArray.get(i));

}
}

@Test(expected=IndexException.class)
public void IndexDetected() throws IndexException {

shortArray.put(shortArray.length(), "Paul");
}

}

TestSimpleArray.java
import org.junit.Test;
import org.junit.BeforeClass;
import static org.junit.Assert.assertEquals;
public class TestSimpleArray {

static Array<String> shortArray;

@BeforeClass
public static void setupArray() throws LengthException {

shortArray = new SimpleArray<String>(10, "Bla");
}

@Test
public void newArrayLengthGood() throws LengthException {

assertEquals(10, shortArray.length());
}

@Test
public void newArrayInitialized() throws LengthException, IndexException {

for (int i = 0; i < shortArray.length(); i++) {
assertEquals("Bla", shortArray.get(i));

}
}

@Test(expected=IndexException.class)
public void IndexDetected() throws IndexException {

shortArray.put(shortArray.length(), "Paul");
}

}

@BeforeClass causes
the method to be run
once before any of the
test methods in the
class

Check the results with assertEquals, or listing the expected exception

Running JUnit
// Step 0: Download junit-4.12.jar and hamcrest-core-1.3.jar
// Jar files are bundles of java classes ready to run

// Step 1: Compile your code as usual and checkstyle
$ javac –Xlint:all SimpleArray.java
$ check SimpleArray.java

// Step 2: Compile tests, but not checkstyle for these :)
$ javac -cp .:junit-4.12.jar -Xlint:all TestSimpleArray.java

// Step 3: Run Junit on your TestProgram. Notice that
org.junit.runner.JUnitCore is the main code we run, and
TestSimpleArray is just a parameter to it
$ java -cp .:junit-4.12.jar:hamcrest-core-1.3.jar \

org.junit.runner.JUnitCore TestSimpleArray
JUnit version 4.12
...
Time: 0.011

OK (3 tests)

// Hooray, everything is okay!
-cp sets the class path. This tells
Java where to find the relevant
code needed for compiling and
running

Hint: save commands to a file!
chmod +x tester.sh
./tester.sh

TestSimpleArray.java
import org.junit.Test;
import org.junit.BeforeClass;
import static org.junit.Assert.assertEquals;
public class TestSimpleArray {

static Array<String> shortArray;

@BeforeClass
public static void setupArray() throws LengthException {

shortArray = new SimpleArray<String>(10, "Bla");
}

@Test
public void newArrayLengthGood() throws LengthException {

assertEquals(10, shortArray.length());
}

@Test
public void newArrayInitialized() throws LengthException, IndexException {

for (int i = 0; i < shortArray.length(); i++) {
assertEquals("Bla", shortArray.get(i));

}
}

@Test(expected=IndexException.class)
public void IndexDetected() throws IndexException {

shortArray.put(shortArray.length(), "Paul");
}

}
What other tests should we add?

Advanced Testing

Example tests:

The assertion methods are also overloaded with a version that has a first
parameter string to detail the cause of an error in the case that the assertion fails.
This is strongly recommended to give valuable feedback to the junit user when
running the tests.

All of the test annotation types (Test, Before, BeforeClass, etc.) and assertion types
(assertEquals, assertTrue, assertNotNull, etc.) must be imported before they can be
used.

assertEquals(expectedValue, actualValue);
assertTrue(booleanExpression); // also assertFalse
assertNotNull(someObject); // also assertNull

assertEquals("detailed message if fails", expectedValue, actualValue);
assertFalse("something going on", booleanExpression);

More Advanced Testing

If you prefer to put the jar files in a parent folder (and then actual
project folders in subdirectories), then from the project folders you
would list the classpaths for the jars with "../" prepended to them,
like this:

Note: if you are doing this via command-line on a windows machine, you
must use a ';' instead of a ':' to separate the paths:

If you're using an IDE (Eclipse/jGRASP), doing JUnit testing is even easier.
You can import a test file into your project, or create a test file. Then

select that file, and choose Run As JUnit Test.

$ javac -cp junit-4.12.jar:. TestArray.java
$ java -cp junit-4.12.jar:hamcrest-core-1.3.jar:. \

org.junit.runner.JUnitCore TestArray

$ javac -cp junit-4.12.jar;. -Xlint:all TestArray.java
$ java -cp junit-4.12.jar;. org.junit.runner.JUnitCore TestArray

Guidelines

1. Every Method should be tested for
correct outputs
• Try simple and complex examples (different lengths of

arrays, etc)
• Private methods can be tested implicitly, but the entire

public interface should be evaluated

2. Every exception and error condition
should also be tested
• This is how the ADT contract will be enforced

3. Write the test cases first, that way
you will know when you are done

More Help

Stacks

Stacks
Stacks are very simple but surprisingly
useful data structures for storing a
collection of information
•Any number of items can be stored, but you
can only manipulate the top of the stack:

• Push: adds a new element to the top
• Pop: takes off the top element
• Top: Lets you peek at top element’s

value without removing it from stack

Many Applications
• In hardware call stack
• Memory management systems
• Parsing arithmetic instructions:

((x+3) / (x+9)) * (42 * sin(x))
• Back-tracing, such as searching within a maze

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

public static int fib(int n) {
if (n <= 1) {
return 1;

}
return fib(n-1) +

fib(n-2);
}

The computer has to keep track of
all of these function calls and

keep everything in order!

Fibonacci Sequence

1 1

2 1 1 1 f(1) f(0) f(1) f(0)

5 f(3) f(3) f(2)

3 2 f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

Equivalent to running
through a maze and
always keeping your
right hand on the wall

Notice we only look at
the top of the stack to
keep track of where we
have been and were
we should go next!

RPN Notation

We usually write arithmetic with “infix” notation:

1 + 2 * 3 => 7

But this can be tricky to parse because of complex order of operations

To simplify this, many systems use “Reverse Polish Notation” (RPN)
invented by logician Jan Łukasiewicz in the 1920s:

• Operator follows the operands:

3 4 + => 7

Such systems often use a stack to manage the calculation:
• Numbers pushed onto stack
• Operator means pop off the last two values from the stack, calculate

the results, and then push result back onto stack

1 2 3 * + => 1 (2 3 *) + => 1 6 + => 7

RPN Notation
Solve: 5 1 2 + 4 � + 3 −

https://en.wikipedia.org/wiki/Reverse_Polish_notation

RPN Notation
Solve: 5 1 2 + 4 � + 3 −

https://en.wikipedia.org/wiki/Reverse_Polish_notation

Stack Interface
public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

}

How would you implement
this interface?

Why?

ListStack

vs.

ArrayStack

ListStack vs ArrayStack

ListStack

head

Node

value
next

Node

value
next

Node

value
next

Node

value
next

null

ArrayStack

int [] arr
int top

ArrayStack versus ListStack

ArrayStack has some nice properties:
• Minimal overhead to storing items:

• 8 bytes for a reference to the entire array with N elements
• (Pretty) simple implementation:

• pop just decrements one number, top is a quick array lookup

ListStack has some nice properties:
• Unbounded: keep adding items to the stack until you run out of memory
• Push, pop, and top are all constant time
• (Pretty) Simple implementation

But also has significant overhead:
• You may end up dedicating more memory to node references (8 bytes each) than to

the values that you are storing (4 bytes per int, 1 byte for char, etc)
• The values may be distributed all over RAM which can incur a penalty on some

hardware
• See computer architecture class for details

But also has a significant challenge/limitation
• Sometimes push() may be impossible (throw a StackOverflow exception), or

expensive (copy entire array to a new larger array)

Stack Interfaces
public interface BoundedStack<T> {

void push(T t) throws FullStackException;
void pop() throws EmptyStackException;
T top() throws EmptyStackException;
boolean empty();
boolean full();

}

public interface UnboundedStack<T> {
void push(T t);
void pop() throws EmptyStackException;
T top() throws EmptyStackException;
boolean empty();

}

Could we have UnboundedStack extend BoundedStack or vice-versa?

Nah: BoundedStack extends Unbounded will have different semantics!

Unbounded extends Bounded will have weird methods/exceptions:
full() method or FullException for Unbounded

Stack Interfaces
public interface Stack<T> {

void pop() throws EmptyStackException;
T top() throws EmptyStackException;
boolean empty();

}

public interface UnboundedStack<T> extends Stack<T> {
void push(T t);

}

public interface BoundedStack<T> extends Stack<T> {
void push(T t) throws FullStackException;
boolean full();

}

This would work, although weird because push() has to be separately
introduced

ArrayStack Growing
If the array size starts at 1, how expensive will it be to grow to 1M if we copy one

element at a time?

1

2

6

5

4

3

1M push()s will require a total of

1+2+3+4+5+6+…+999,999 copies

= 0.5MM steps!

O(n2) performance L

ArrayStack Doubling
If the array size starts at 1, how expensive will it be to grow to 1M?

How many doublings will it take?
How many times will an item be copied?

1

2

32

16

8

4

How many rounds of doubling?

lg(1M) = 20

How many total copies?

1+2+4+8+16+32+…+512k

Whats the total runtime for n pushes?

O(n) J

= 1M12+102+1002+10002+100002 +

Geometric series

½ + ¼ + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 … = 1

A geometric series is a series with a constant ratio between successive terms.

a = ½ r = ½ n = lg x

(½) [(1-1/2 lg n) / (1- ½)] = (½) [(1-0) / (½)] = (½) / (½) = 1

Amortized Analysis
The amortized cost per operation for a sequence of n operations

is the total cost of the operations divided by n

Example: If we have 100 operations at cost 1, followed by one operation at
cost 100, the amortized cost per operation is 200/101 < 2.
Note the worst case operation analysis yields 100

Amortized cost analysis is helpful because many important data structures
occasionally incur a large cost as they perform some kind of rebalancing or
improvement of their internal state, but those expensive operations cannot
occur too frequently. In this case, amortized analysis can give a much tighter
bound on the true cost of using the data structure than a standard worst-case-
per-operation bound.

Note that even though the definition of amortized cost is simple,
analyzing it will often require some thought.

http://www.cs.cmu.edu/afs/cs/academic/class/15451-
s10/www/lectures/lect0203.pdf

Stack Interface
public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

}

How would you *test*
the implementation?

Why?

Stack JUnit Tests (1/2)
import org.junit.Test;
import org.junit.Before;
import static org.junit.Assert.assertEquals;

public class TestStack {
private Stack<Integer> stack;

@Before
public void makeStack() {

stack = new ListStack<Integer>();
}

@Test
public void testNewEmpty() {

assertEquals(true, stack.empty());
}

@Test
public void testPushNotEmpty() {

stack.push(12);
assertEquals(false, stack.empty());

}

@Test
public void testPushPopEmpty() {

stack.push(12);
stack.pop();
assertEquals(true, stack.empty());

}

Stack JUnit Tests (2/2)

@Test
public void testPushTopEqual() {

stack.push(12);
int hack = stack.top();
assertEquals(12, hack);

}

@Test
public void testLotsOfPush() {

for (int i = 0; i < 100; i++) {
stack.push(i);

}
int pops;
for (pops = 0; !stack.empty(); pops++) {

int hack = stack.top();
assertEquals(99-pops, hack);
stack.pop();

}
assertEquals(100, pops);

}
}

Queues

Next Steps

1. Work on HW2

2. Get ready for HW3

3. Check on Piazza for tips & corrections!

