CS 600.226: Data Structures
Michael Schatz

==X

Sept 19 2018 @
Lecture 9. Stacks

Agenda

I. Review HW2
2. Recap on Sorting

3. Stacks

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!

Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:
Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview

The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use with the correct configuration file
from !

http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 1: Revenge of Unique (30%)

You wrote a small Java program called Unique for Assignment 1. The
program accepted any number of command line arguments (each of which
was supposed to be an integer) and printed each unique integer it
received back out once, eliminating duplicates in the process.

For this problem, you will implement a new version of Unique called
UniqueRevenge with two major changes:

» First, you are no longer allowed to use Java arrays (nor any other
advanced data structure), but you can use our Array interface and our
SimpleArray implementation from lecture (also available on github)

« Second, you're going to modify the program to read the integers from
standard input instead of processing the command line.

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 2: Flexible Arrays (20%)

Develop an algebraic specification for the abstract data type

FlexibleArray which works like the existing Array ADT for the most

part except that both its lower and its upper index bound are set when
the array is created. The lower as well as upper bound can be any integer,
provided the lower bound is less than or equal the upper bound.

Write up the specification for FlexibleArray in the format we used in lecture
and comment on the design decisions you had to make. Also, tell us what
kind of array you prefer and why.

Hints

« AFlexibleArray for which the lower bound equals the upper bound has
exactly one slot.

* Your FlexibleArray is not the Array ADT we did in lecture; it doesn't
have to support the exact same set of operations.

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 3: Sparse Arrays (35%)

A sparse array is an array in which relatively few positions have values
that differ from the initial value set when the array was created. For
sparse arrays, it is wasteful to store the value of all positions explicitly
since most of them never change and take the default value of the
array. Instead, we want to store positions that have actually been

changed.

For this problem, write a class SparseArray that implements the Array
interface we developed in lecture (the same interface you used for
Problem 1 above). Do not modify the Array interface in any

way! Instead of using a plain Java array like we did for SimpleArray,
your SparseArray should use a linked list of Node objects to store
values, similar to the ListArray from lecture (and available in).
However, your nodes no longer store just the data at a certain position,
they also store the position itself!

https://github.com/schatzlab/datastructures2018/tree/master/lectures/05.Iterators

Introduction to Checkstyle
http://checkstyle.sourceforge.net/

mschatz@schatzmac: 23:11:48: ~/Dropbox/Document s/Teaching/2016/JHU/DatasStructures/Lectures/@2 . Procticals § jova -jar checkstyle-6.15-
gll.jor -c cs226_checks.xml Helloworld.jovo

Starting oudit...

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DatasStructures/Lectures/@2. Practicals/HelloWorld, java:1l: Missing a Javad
oc comment. [JavadocType]

[ERROR] /Users/mschatz/Dropbox/Documents./teaching/2016/JHU/DataStructures/Lectures/@2. Praocticals/Helloworld. java:1:1: Utility class
es should not have a public or defoult constructor. [HideUtilityClassConstructor]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/92. Procticals/Helloworld. jova:2:1: "{" at column
1 should be on the previous line. [LeftCurly)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Practicals/Helloorld. java:3: 'method def mod
ifier' have incorrect indentotion level 2, expected level should be 4, [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Procticals/Hel loWorld. jova:3:3: Missing a Jav
odoc comment. [JavadocMethod)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2 . Procticals/Helloorld, java:3:33: 'String” is
followed by whitespoce. [NoWhitespaceAfter]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Praocticals/HelloWorld. jova:4: "method def lcu
rly’ have incorrect indentation level 2, expected level should be 4. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Procticals/Helloworld. jova:4:3: "{' ot column
3 should be on the previous line. [LeftCurly)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DatasStructures/Lectures/@2. Practicals/Helloworld, jova:S: "method call’ ¢
hild have incorrect indentation level 4, expected level should be 8. [Indentation)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/92. Practicals/Helloworld. java:S: 'method def' ch
ild have incorrect indentation level 4, expected level should be 8. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02. Procticals/Helloorld. jova:6: "method def rcu
rly’ have incorrect indentation level 2, expected level should be 4. [Indentation)

Audit done.

Checkstyle ends with 11 errors.

mschatz@schatzmoc: 23:11:52: ~/Dropbox/Documents/Teaching/2016/JHU/DataStructures/Lectures/@2 . Procticals § l

$ java -jar datastructures2018/resources/checkstyle-8.12-all.jar \
-c datastructures2018/resources/cs226 checks.xml HelloWorld. java

Agenda

I. Review HW2
2. Recap on Sorting

3. Stacks

Growth of functions

[Horrible] (Bad] Fai | [Good] [Excelient]

http://bigocheatsheet.com/

Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");

return;
}
int len = Integer.parselnt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+l; }

permute(keys, 0, len-1);
System.err.println("There are + numtries
+ " permutations of " + len + " items.");

$ for i in "seq 1 207 ;
do echo $i; java Permute $i > $i.log ; done
1
There are 1 permutations of 1 items.
2
There are 2 permutations of 2 items.
3
There are 6 permutations of 3 items.
4
There are 24 permutations of 4 items.
5
Jjéb There are 120 permutations of 5 items.

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

Ig(1,000,000) = 20

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
I 05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
I 05 09 13 15 26 28 33 (3858 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order

I 05 09 13 (15 26 28 33/(38)58 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

.Sorted Order
(15) 26 28 33((38)58 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

.Sorted Order
(15) 26 28 33((38)58 71 81 93 96 96 99

Selection Sort
Quickly sort these numbers into ascending order:

14,29,6,31,39,64,78,50, 13,63,61, 19

Find the minimum

O(N)

14,29 6,31, 39, 64, 78,50, 13,63,61, 19

Flip\t into the right place o(1)
6,29, 14,31,39, 64,78,50, 13, 63,61, 19

Find the next smallest

6.29,14,31,39, 64,78,50/13 63,61, 19 O(N-1)
Flipiti r ce

6,13, 14,31, 39, 64,78,50.29, 63, 61, 19 O(1)
Find the next smallest

6,13/14 31,39, 64,78,50,29, 63,61, 19 O(N-2)

Flip it 3L1to the right place
6,13,14,31,39,64,78,50,29,63,61, 19 O(1)

Selection Sort Analysis

public static void selectionSort(int[] a) {
for (int 1 = 0; i < a.length - 1; i++) {
int min = 1;
for (int j =1 + 1; j < a.length; j++) {
if (a[j] < a[min]) {

min = j;
}
}
int t = a[i]; a[i] = a[min]; a[min] = t;
}
}

Analysis
* OQuterloop: i=0ton
* Inner loop: j=iton

« Total Running time: Outer * Inner = O(n?)

n | n
T:n—l—(n—1)—|—(n—2)—|—---—|—3—|—2—|—1:Zz:
i=1

2

(n+1)

= O(n?)

Selection Sort Analysis

public static void selectionSort(int[] a) {

for (int 1 = 0; i < a.length - 1; i++) {
int min = 1;
for (int j =1 + 1; j < a.length; j++) {

if (a[j] < a[min]) {

min = j;

} Formally you would prove
} the recurrence using
int t = a[i]; a[i] = a[min]; a[n jnduction: Discrete Math

class!

Requires almost no extra
space: In-place algorithm

Analysis “Feels slow” since inner

* Outerloop: i=0ton loop only seeks out one

* Inner loop: j=iton number (the next biggest)
« Total Running time: Outer * Inner = O(n?)

" nn+1
T=n+(n—1)+(n—2)+---+3+2+1:Zz:—(.)

1=1

= O(n?)

Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[14,29],6,31,39,64,78,50, 13,63,61,19 14,6,29,31,39,64,50,[78, 13],63,61, 19
[14,29],6,31,39,64,78,50, 13,63,61,19 14,6,29,31,39,64,50,[13,78],63,61, 19

14,[29,6], 31, 39,64,78,50,13,63,61, 19 14, 6,29,31,39,64,50, 13,[/8,63],61, 19
14, [6,29],31,39,64,78,50,13,63,61, 19 14, 6,29,31,39,64,50, 13,[63,/8],61, 19

14,6,[29,31],39,64,78,50,13,63,61, 19 14,6,29,31,39,64,50, 13,63,[/8,61], 19
14,6,[29,31],39,64,78,50,13,63,61, 19 14,6,29,31,39,64,50, 13,63,[61, /8], 19

14,6,29,[31,39],64,78,50, 13,63,61, 19
14,6,29,[31,39],64,78,50, 13,63,61, 19
14,6,29,31,[39,64],78,50, 13,63,61, 19
14,6,29,31,[39,64], 78,50, 13,63,61,19 14,6,29,31,39,64,50, 13,63,61, 19,
14,6,29,31,39,[64, 78], 50, 13, 63,61, 19
14,6,29,31,39,[64,78],50, 13, 63,61, 19

14,6,29,31,39,64,[/8,50],13,63,61, 19
14,6,29,31, 39,64,[50,/8],13,63,61, 19

14,6,29,31,39,64,50, 13,63,61,[/8, 19]
14, 6,29,31,39,64,50,13,63,61,[19, /8]

Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[14,6],29,31,39,64,50,13,63,6l, 19, 6,14,29,31,39,50, 13, [64, 63], 61, 19,
[6, 141,29, 31,39, 64, 50, 13, 63,61, 19, 6, 14,29,31,39,50, 13, [63,64], 61, 19,

6,[14,29],31,39, 64,50, 13,63,61, 19,
6,[14,29],31,39, 64,50, 13,63,61, 19,
6,14,[29,31],39, 64,50, 13,63,61, 19,
6,14,[29,31],39,64,50,13,63,61, 19, 6,14,29,31,39,50, 13,63,61,[64, 19],
6,14,29,[31,39],64,50, 13,63,61, 19, 6,14,29,31, 39,50, 13,63,61,[19,64],
6,14,29,[31,39], 64,50, 13,63,61, 19,

6,14,29,31,[39,64],50, 13,63,61, 19,
6,14,29,31,[39,64],50, 13,63,61, 19,

6,14,29,31,39,[64,50], 13,63,61, 19,
6, 14,29,31,39,[50,64], 13,63,61, 19,

6,14,29,31,39,50,[64, 13],63, 61, 19,
6,14,29,31,39,50,[13,64], 63,61, 19,

6,14,29,31,39,50, 13,63,[64,61], 19,
6,14,29,31,39,50,13,63,[61,64], 19,

6,14,29,31,39,50, 13,63,61, 19,

Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[6, 14],29,31,39,50,13,63,61, 19, How many passes will we need to do!?
6,[14,29],31,39,50,13,63,61, 19, O(n)
6,14,[29,31],39,50, 13,63,61, 19,

6,14,29,[31,39],50, 13,63,61, 19,

How much work does each pass take?
6,14,29,31,[39,50],13,63,61, 19,

6,14,29,31,39,[50, 13], 63, 61, 19, Ofn)
6,14,29,31,39,[13,50],63,61, 19,

6, 14,29,31, 39, 13,[50,63],61, 19, What is the total amount of work?
6,14,29,31,39,13,50,[63,61], 19, n passes, each requiring O(n) => O(n?)
6,14,29,31,39,13,50,[61,63], 19,

6, 14,29,31,39,13,50,61,[63, 19], Note, you might get lucky and finish
6,14,29,31,39,13,50,61,[19, 63], much sooner than this
6,14,29,31,39,13,50,61, 19, “Feels faster’”: multiple swaps on

the inner loop, but...

“Feels slow’ because inner loop
sweeps entire list to move one
number into sorted position

Insertion Sort

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50,13,63,61, 19

|4, ?2, 6,31,39,64,78,50,13,63,61,19 Base Case: Declare the first element as a
14, ,31,39,64,78,50,13,63,61,19 correctly sorted array

644,29, 31,39,64,78, 50, 13,63,61, 19 3 Repeat: Iteratively add the next unsorted
6, 14,29,31,39,64,78,50,13,63,61, 19 ‘CC') element to the partially sorted array at the
6, 14,29, 31, 3%, 63, 78,50, 13,63,61, 19 g correct position

6,14,29,31,39,64,78,50, 13,63,61, |9 -g
6,14,29,31,39,64,78,50, 13,63,61, 19

Slide the unsorted element into the correct

6. 14,29,31,39, 56754, 78. 13, 63,61, 19 position:

6 134TA79-IT-39.50 64.75.63. B 14,29,6,31,39,64,78,50, 13,63, 61,19
6,13, I4,29,3I,39,50,6k,/6431},6|, 19 ?6,29,%39,64,78,50, 13,63,61,19
6,'3,'4,29,3',39,50,6 ’ 4_&181—!-9 ,|4,29,3|,39,64,78,50,|3,63,6|,|9

6,13, 14, 19,729, 31, 39,50, 61, 63, 64,78 “ ,
Feels fast” because you always have

Sorted elements a partially sorted list, but some
insertions will be expensive

Insertion Sort

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50, 13,63,61, 19

unsorted rest of array

unsorted rest of array
unsorted rest of array
unsorted rest of array
unsorted rest of array
unsorted rest of array

unsorted rest of array

unsorted rest of array

Quadratic Sorting Algorithms

Selection Sort Bubble Sort Insertion Sort
Move next smallest Swap up bigger Slide next value into
into position values over smaller correct position

Sorting Race!

Problem 2: All Sorts of Sorts (S0%)

Wour SeC0Nd Ltk for TNS MISEYREN 1 10 Expiore Some of D DR SOrNg SESr RS and TN 2ANYRA. AN Of Thete MDOAENRS 200 QUaraC A Mrvre OF TN AayrnpRoti DEormanCe, Dot Iy Aeverthelens & Mer 18 Dhew actud performance. W't focus on the Ialoweg
1vee sigoren

o Bubbie S0 (win The ‘S0P early f 50 SRaPs” eens0n)

o Selecien Yo

« Dmerton Sont

The archae o S g e * for W Mortng sigormhes. Woul reed & working SEATABLeAr iy Clam Brom Probiem 1 and poul need 53 Underitand T 138owing nterface an wel (AgEn COMprenIad, Be 1T 50 93 U8 and read the AN
roartace svalatie on Paunay

PRLic Interface SortingAlgerithe«T sutends Comparadie«Trs (
void sart{Array<T> array):
String same():

Loty Iook &t the mmple 15 St An olyect i Consdernd an igarthm wustatie for sorting In this frammework f (a) we Can stk 93 500 & pven Array and (3] we Can ask 2 for s mame je g “Tuartion Sort")

The more compicated st i ot T 205 The wue of extends nside the angle Srackets means Tt avy Type T we want 15 5001 most implement e ertace Conparable as well It 0Bviourly cant [ust Be any 0N type. & must De & Type 150 which the supression “s is less
han b actualy makes sere. Usng Compar s le i o 100m o Javies wary of siying St we can order the olyecty you thould Y read up On 1he Setalds Sere!

As 0n examgie for a0 B, we hawe provided an mplementation of Select LonSort on Mass sreedy (Actsally, Bhare are 450 two other sigorifm, MulL50r £ and SromeSor L, uat 40 pou st oot with & few 20 run right swey)

Wou reed 50 Write Clanies Implement g RSO LeSor t and Enaer t1orSor t for s proiem st Mie Our examgle sigorEtma. your dasses have 1o Laplenent the Sor tAngAl gor L the merface

AB of B OuRE Be Tarly iragheiormand once you et Lied 10 Bhe Ramewort. Spesking of the Famewort, B wiry yOu SNy TUNT Ihe VarOuL SPOrEhera 1t Dy wing e PolySort, Jave program we've provided s wel You 1hou'd Be able 13 compde and ren t
WO et RavNg W ETAN BTy LOrTAG (308 yOLruet Mere's how

$ Java PolySert 4000 <random.cats

Algorithe Sorted? Sire Rescs Writes Seconds

il Sert false 4000 B L) ©.000007
Grome Sort ree 4,000 32,195,097 s.085. 80 0. 2408%2
Selection Sort e 4,000 H.0M.mMm M 0.252088

Tha wel rend the fest 8000 strings from the e Fandon. dats and 100t T uing 1 Sealabie SEorihvams. As you CaN 300, the Srogram Checks If the Sparthe aclualy warknd (S0°10d7) and reports hom Maty Sperationd of Bhe widiripng SLATADIOALT by were uted s
©roer 33 parfoem Bhe 10rt (Readt, Wrtet) Frnally, the Sroram SN0 prints Out 1ong £ S0k 53 501 the Mrriy (Secondt) But Tast fumber will viry widely ACrOtS Machings 10 yOu Can really Saly Ute It 13r relative COMPATEONE 0N the MAching Sctuslly rUVENg T Expermant.

However, the main point of o s &5 Aol The Coding mork. [Raiedd, The M DO 5 00 evaluste 200 Compare [SOrTNG SIEOrIvms 00 Gerent sets of Gata. We've provided Ihree sets of wsefil Lest Gath 08 Faris 0d you G w5 THe COMIN] M rpurrent 10 wiry how
TN of B 5 aed erely (RSNG NG e 530 of The PO YO, INGWT 17y 19 Quanly how ThE Wi Out MQONINIS SR A FED AN whiy they GFer 31 well (L8 WASE JDOUT 3 PR HPONTRT MaLEt 1 DETIE OF WONIE TRAN SNOTWY O 17 & DVen Sata Wt N your READNE
T30 you P00 0escr e The sores of Euparments yi, a0 Wit Ga yOou (OReCId. 0] WA yOur (ONCRA0ns SDOuT T Derinrmance of These Fpor s are Some e 1or wWAS 10 200 045

o Does 1he Kt raing Tme (OrTRIRONS £ The Sy ™Riotc (OTOIRETY 51 yOu woLkd eapect?
o What suplans T o SMerences e Jpor thers?
o Dots 1 maner war Ung of Sata FaNGOm, aready SONd N 0PI 100, SO A Besiending 0rder) you ae Sontng

JUSLI0 B0 Ol Tes, weS Aeed The 0000, 200 1 IAGUAT B 4D 10 TN Uil STANGIAES. B The “TeporT” pou Pt i pour READVE 15 just 2% #mpartant s the Code!

Sorting Race!

Problem 2: All Sorts of Sorts (S0%)

Wour SeCONd Ltk for TNS BISEYRENT 1 10 Expiore Some of D DRt SOrNg SESr s and TN 2ANYRA. AN Of Thele MDOAENRS 208 QUaraic A Mrre OF TN AayrnpRoti DRormanCe, Dut Iy Aeverthelens &M 18 Dhew actud performance. W't focus on the Ialoweg
1vee sigoren

o Bubbie SO (win The S0 early f 20 Saps” exenson)
o Selecien Yo
o buerten Sont

The archve o0 B Iagment CONtEmS § Banc ameeork 100 euaicatng sorting sigormhems Woul reed & working SEATAB1AAr iy Clam Brom Problem | and ool need 93 underitand e & " terface an wel (agan compr B0 507 80 93 U0 and read the AN
Peartace aadatie on P oasiay

PAlLc interface SortingAlgerithe«T sxtends Comparadie«Tr» (
void sart{Array<T> array):
String same():

)

Loty look & the mmpie 10 frst An olyect & Conpdernd an Sigorthm Latabie for orting in this framework (a) we can stk & Ty and 5] we can ank 1t for ts mame je g Twartion Sort)

e mertace Comparable s well It obviouly cant [ust Be any OME type. & must De & Type 100 which the supression “s s s
o he Getads Sere!

The more compicated st i 2t e 05 The wue of extends nskde the angle Drackets means that avy type T we want 13 ot
han b actualy makes sere. Usng Compar s le i o 100m o Javies wary of siying St we can order the olyecty you thould

As 0n examgie for a0 B, we hawe provided an mplementation of Select LonSort on Mass sreedy (Actsally, Bhare are 450 two other sigorifm, MulL50r £ and SromeSor L, uat 40 pou st oot with & few 20 run right swey)

Wou reed 50 write Clasies Implementng BB LeSor t and Enaer t1onSor t for Sus probiem. st Moe Our examgle sigortma, your desses have 1o LapLenent the Sor L AngALgor § the nmerface.

AR of B o Be Tarly straghtionmand 0nce you et Laed 10 e amework. Spesking of the Rramework, Bhe wiry yOu SCtually TUN" Ihe Varioul Sporthrs 1t By wiing the PolySart, Jave program me've provided a8 wel You sthou'd Be able 13 compde and ren t
WINO pat Raving wrEmen 2ty MOrTAG (08 yOuLret Mere's how

$ Java PolySert 4000 <rangom.cats

Algoritse Sorted? Size Rescds Writes Seconcy

Wil Sert false 4000 ° ® ©.000007
nome Sert e 4,000 32,195,097 085,008 0240852
Selection Sert ree 4,000 “o0mm I m 0.2508%

Tha wel rend the fest 8000 strings from the e Fandon. dats and 100t T uing 1 Sealabie SEorihvams. As you CaN 300, the Srogram Checks If the Sparthe aclualy warknd (S0°10d7) and reports hom Maty Sperationd of Bhe widiripng SLATADIOALT by were uted s
Oroer 13 parform the 10rt (Ready, Wrtew) Fraly, the Srogrem N0 prints Ot 1Ong £ S0k 53 501 the Mrray (Secondy) Bt That fumber wil viry adely SCr0tS Machinet 40 yOu Can really Snly Ute It 137 FEtve COMPATIONE 0N the MAching actuslly rUVaNg T Eperment.

However, the main point of o s &5 Aol The Coding mork. [Raiedd, The M DO 5 00 evaluste 200 Compare [SOrTNG SIEOrIvms 00 Gerent sets of Gata. We've provided Ihree sets of wsefil Lest Gath 08 Faris 0d you G w5 THe COMIN] M rpurrent 10 wiry how
TN of 1 5 Vg NereDy (RGNE A TN 500 OF The PIODIT) YL INGU Ty 1D QuAantly how ThE Wi Out MDOENME G MR And FED AN why [y G%er 21 well (10 WASE JDOUT 3 BVEN Q0TI MALEL 1 DRI OF WOSE TRAN SNOTWY 0N 137 & DVeN Sata Wt 1N your READNE
T30 you 00 0escr e The soves of Eupermments pi, a0 Wit Gata yOou (ORI, 0] WA yOur (ONCRa0ns SD0uT T Derinrmance of Thete HEor s e Some e 1or wWhS 10 200 048

o Does 1he Kt raing Tme (OrTRIRONS £ The Sy ™Riotc (OTOIRETY 51 yOu woLkd eapect?
o WIS eupla s The Pract il GMerend et Deteeen Thets 3 por thers)
o Does T mamer afar WA Of 5008 FaN0Om, Sl SO M AS0RNEING 1087, SO A Besiending 0rder) yOu ae sontng?

JUSLI0 Be Ondr Yes, wes Aeed The 0000 00 1 A0 B 4P 10 TN Uil STANGIEs. Bt The “Teport” piu Pt i pour READWE I5 just 2% #portant a8 the code!

Part 3: Stacks

Fibonacci Sequence

public static int fib(int n) {
if (n<=1){
return |;
}
return fib(n-1) +
fib(n-2);

Introducing the call stack

g
Return val to f line 400

int g(double a) { a=28
return h(a*2); val = <h(56)>
}

static public void main() {
int val = £(15); main
System.out.println(val); val = <f(15)>

Introducing the call stack

The call stack keeps track of the local variables and
return location for the current function. This makes it
possible for program execution to jump from function to
function without loosing track of where the program
should resume

A stack frame records the information for each function
call, with local variables and the address of where to
resume processing after this function is complete.

=> Take a computer architecture course for more info

Importantly the computer only needs to add or

remove items from the very top of the stack,

making it easy for the computer to keep track of
where to go next!

More generally, stacks are a very useful data

structure for Last-In-First-Out (LIFO) processing main
val = <f(15)>

Stacks

Stacks are very simple but surprisingly
useful data structures for storing a
collection of information
* Any number of items can be stored, but you
can only manipulate the top of the stack:
* Push:adds a new element to the top
* Pop: takes off the top element
* Top: Lets you peek at top element’s
value without removing it from stack

Many Applications
* In hardware call stack

* Memory management systems
* Parsing arithmetic instructions:

((x+3) / (x+9)) * (42 * sin(x))

* Back-tracing, such as searching within a maze

Fibonacci Sequence

F(6)

£(5)

] [
£(3) £(2)

]
£(3)

bl B WW
1t
@[[o [0

W)

Fibonacci Sequence

F(6)

£(5)

£(3)

o I o {0 %ﬁ:‘w

) .)

UGONRION RORRIUN RONRIY

W)

Fibonacci Sequence

F(6)

) Q)

f2)

f2) 2) B (1) B Q) [f(1) | f(1) £(0)

c)

UGONRON RONRUN RURRGN RUMIY

f(1) (0)

Fibonacci Sequence

Q)) .

) I o ool o

UGONRON RONRUN RURRGN RUMIY

f(1) (0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

UGONRON RONRUN RURRGN RUMIY

f(1) (0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

f2) | f() B (D) | f0) | £(1) | o) I (1) £(0)

f(1) (0)

Fibonacci Sequence

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

f2) | f() B (D) | f0) | £(1) | o) I (1) £(0)

)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

f2) | f() B (D) | f0) | £(1) | o) I (1) £(0)

)

Fibonacci Sequence

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

f2) | f() B (D) | f0) | £(1) | o) I (1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

2 [B | fo) | £(1) | o) | (1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

2 [B | fo) | £(1) | o) | (1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

2 [B | fo) | £(1) | o) | (1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(3) f(2) UGN RON RONRON RGN

2 | 1) [foy | (D) | o) 1l f(1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

£(2) 2) B (1) B Q) [f(1) | f(1) £(0)

2 | 1) [foy | (D) | o) 1l f(1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

£(2) 2) B (1) B Q) [f(1) | f(1) £(0)

2 | 1) [foy | (D) | o) 1l f(1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(2) UGN RON RONRON RGN

2 | 1) [foy | (D) | o) 1l f(1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(2) UGN RON RONRON RGN

| |fo) | 'f(1) | o) BB (1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(2) UGN RON RONRON RGN

| |fo) | 'f(1) | o) BB (1) £(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

f(2) UGN RON RONRON RGN

| 1 L | o) B F(1) f(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

2) B (1) B Q) [f(1) | f(1) £(0)

L L f() | fo) I (1) f(0)

Fibonacci Sequence

F(6)

f(3) f(3) f(2)

/\

2) B (1) B Q) [f(1) | f(1) £(0)

L L f() | fo) I (1) f(0)

Fibonacci Sequence

F(6)

3 f2) W) B f2) | f(1) | f(1) f0)

L | 1 ey | fo) I f(1) f0)

- A A A

Stack ADT

adt Stack
uses Any, Boolean
defines Stack<T: Any>
operations
new:
push:
pop:
top:
empty:
precondltlons

aXlOInS

Stack ADT

adt Stack Note: pop(push(s,t)) =s
uses Any, Boolean is comparing the whole
defines Stack<T: Any> stack, but we havent
operations defined what it means
new: -—--> Stack<T> for one stack to equal
push: Stack<T> x T ---> Stack<T> another!
pop: Stack<T> ---> Stack<T>
top: Stack<T> —---> T

i

empty: Stack<T>

preconditions

—-—=-> Boolean

pop(s): not empty(s)

top(s): not empty(s)
axioms

empty(new())

not empty(push(s, t))

top(push(s, t))
pop(push(s, t))

Relax this flaw by considering the
axioms as rewrite rules:

top(pop(push(push(new(), 1), 2))) = 1
-t Can be rewritten as
= s top(push(new(), 1)) = 1
and finally to

1=1

Stack ADT

adt Stack
uses Any, Boolean
defines Stack<T: Any>
operations
new: ---> Stack<T>

top(push(s, t)) =t
pop(push(s, t)) = s

Stack Interface

public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

How would you implement
this interface? -6

5
Why? 3
:

““—hoW -

& o
@

“a—NWhH -

> o
:’\
—

AN WEHEON-

[S

Stack isplesented using a linked list,

ALl operations take 0(1) time in the worst case; however
each push() results in a mew object being allocated which
may be imappropriate for some applicatices.

@paran <T> Elesent type.
./
public class ListStack<T> isplesents Stack<T> {
private static class Node<T> {
Node<T> next;
T data;

private Node<T» first;

S
Create an espty stack.

./
)ﬂllc ListStack() {

Override
public Y‘up() throws EsptyException {
try
return this.first.data;
} cateh (NullPointerException e) {
throw new EmptyException();

}

QOverride

'.l:‘ v:u pop() throws EmptyException {
o this.first = this.first.mext;
} catch (NullPointerException e) {

throw new EmptyException();
}
@Override

peblic veid push(T t) {
Node<T> n = new Node<T>();

this.first = n;

override
public boolean espty() {

: return this.first == null; -
Override
peblic String toString() {
String s = "}
for (Node<T> m = this.first; a I= null; n = a.next) {
s += n.data.toStringl);
if (n.next != null) {
g, “y
}
$ = "%
) retura s;

Stack isplesented using » growing array.

ALL cperations except pushi) take O(1) tise is the worst
case; push() takes O(1) amortized time because the array
may need to be resized; however, compared to ListStack,
fewer push() cperations result in cbjects Beisg allocated.

retern ﬁh..hlm.u - l"

- %
e
=

®verrige ¢
void pepl) throws EmptyException
ir (tlh empty()) {
throw new EsptyExceptiond);

this,used -= 1;

private tuh- fulll) {
R retern this.data.length == this.used;

private void growl) {
T bigger = (Y1) new OBjectthis.cata.length = 2);
for (ist 1 = 2; § < this,used; ies) {
bigger(i) = this.datali);

this.dats = bigger;

@Overrice
void push(T t) {
Af (ehis.tull())
this.growl);

}
this.datalthis.used] = t;
this,used += 1;

verride
peblic String toString() {
Str. s=m~["}
for (1w this.used = 1 L »e 07 =) {
s o= this.datali).tesString();
itia>e{
g, "3

}

N

g

Stack Interface

public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

How would you *test*
the implementation? -6

5
Why? 3
;

““—hoW -

& o
S
=

“a—NWhH -

F o
:’\
—

AN WEHEON-

Introducing JUnit

Lecture 2: SimpleCounter.java

public class SimpleCounter implements Counter {

public static void main(String[] args) {

Counter ¢ = new SimpleCounter();
assert c.value() == 0;
System.out.println("Counter is now: " + c.value());
c.up();
assert c.value() == 1;
System.out.println("Counter is now: " + c.value());
c.down();
assert c.value() == 0;
System.out.println("Counter is now: " + c.value());
c.down();
c.up();
c.up();
c.up();
System.out.println("Counter is now: " + c.value());
assert c.value() == 2;
}
}
Asserts are very useful for testing, but are very limited especially
because first failed assert kills the entire progaram ®

Lecture 2: SimpleCounter.java

public static void main(String[] args) {
MyArray a = new MyArray(5, "Mike");

a.put(3, "Peter");
a.put(2, 1234);

for (int i = 0; i < a.length(); i++) {
System.out.println("a[" + 1 + "]: " +
a.get(i) + " " + a.get(i).getClass());
}
try {
System.out.println("a[" + 57 + "]: " + a.get(57));

} catch (IndexException e) {
System.out.println("Caught IndexException (as expected)");

}

Printing is useful while developing, but becomes
unscalable in large programs with lots of methods to test

Introducing JUnit

® 0 ® N sunit-About x

€ C O @ Secwre hips/junitorgitd) v @
MEODxua ocey B Y O Dt OB € W @ © Bacshi Bajw EMeda Eshop [edt) Am Cookles [Remove NYT Cookl.. i

JUnit4 ~ Prosect Documentation ~

JU..Eit

JUnt 4

Version: 4.12 Last Publishect: 2018-02-07

JUnit s & siple framework 10 write ropestable tests, | is an Fstance of the xUnit architectur for unit testing fameworks.

#lest

public void mewArraylistsHaveNoE lements() {
assertThot(nem Arraylist().size(), is(9));

}

: ®
,Quc void sizeReturnsNusberOfElements() {

List instonce « mew Arraylist();
instonce, odd(new Object());
instance . odd(new Object());

Annotations

Start by marking your tests with m

Lot's take a tour »

Welcome Usage and idkoms Third-party extensions

o Download and instal o Assertions o Custom Rurrwns

o Gatting stanted o Test Rurren o ML YBAN0 COMMONS COMMONS-testing for

« Reloase Notes o AQOregating tosts in Sules UninyClass TestUtl per #646
e 412 o Test Execution Order « System Rues - A collection of JUnit rules
o 4N o Exception Testing for testing code that uses java lang Systom
» 490 « Matchers and assertThat o JUnit Toolox - Provides runners for paraiel
e 409 o Ignoring Tests testing. a PoolingMait class to case
e 45 o Timoout for Tosts AxyNChronous lesting, and &

« Martainer Documentation

Pararmetenrized Tests M ldcordPotterniul te which allow you 10

Sample Report

I « I « B R P e o L GOe OO M, w00 ¢
MBrve IR0 EE Y O 08 Dicvenres L5 Do Bapw Baw Baow Bivese B%od 0 eft [Semove NYT Cottimn tr Bochmarss P0%e Bosamany

Apache Maven Project Mmaven

N M —— — ————— g e Sy W— L P A
e Surefire Report
———
- Summary
g N e
..
—— -
. T S b ad Ralonad Boeme e A
—— " M M M 1o0m V-
[

S W b e ot B vt S w B it o) - oy o s bt

i tmrien Package List

P Petage o " o—

o LR ~— — [—— e S —
S —
I |~ e - : . . - -
e ———
D
— T BEAL WY A W wewn P Wy S - W W —————
badng o apachs maven plugINe surelre report
———
o oanan . — — Sonree e e S —
e [' . ‘. ' - “ae
—e
2 B tatdatid " . . . e~ .
e w—

Test Cases

JUnit According to Peter ©

So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

* For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing
code as actual program code, and so the principles you use to make
regular code easier to read (splitting things into methods and classes, etc.)
should also apply to test code.

* Also, JUnit allows you to run all your test cases every time, it doesn’t
stop at the first failing test case like assert does. This way you can get
feedback about multiple failed tests all at once.

* Finally, lots of companies expect graduates to have some experience
with testing frameworks, so why not pick it up now? Note that testing is
not just for software developers anymore, increasingly people working
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

So it’s a really useful skill to have on your list.

JUnit According to Peter ©

So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

* For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing

From HW3 on out, when we say <)
“write test cases”

_— N

' ' as part of an assignment, we mean
f “write JUnit 4 test cases”
. as descnbed here. e

not just for software developers anymore mcreasmgly people workmg
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

= So it’s a really useful skill to have on your list.

Next Steps

. Work on HW?2

2. Check on Piazza for tips & corrections!

