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Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!

Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:
Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview

The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use with the correct configuration file
from !


http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 1: Revenge of Unique (30%)

You wrote a small Java program called Unique for Assignment 1. The
program accepted any number of command line arguments (each of which
was supposed to be an integer) and printed each unique integer it
received back out once, eliminating duplicates in the process.

For this problem, you will implement a new version of Unique called
UniqueRevenge with two major changes:

» First, you are no longer allowed to use Java arrays (nor any other
advanced data structure), but you can use our Array interface and our
SimpleArray implementation from lecture (also available on github)

« Second, you're going to modify the program to read the integers from
standard input instead of processing the command line.




Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 2: Flexible Arrays (20%)

Develop an algebraic specification for the abstract data type

FlexibleArray which works like the existing Array ADT for the most

part except that both its lower and its upper index bound are set when
the array is created. The lower as well as upper bound can be any integer,
provided the lower bound is less than or equal the upper bound.

Write up the specification for FlexibleArray in the format we used in lecture
and comment on the design decisions you had to make. Also, tell us what
kind of array you prefer and why.

Hints

« AFlexibleArray for which the lower bound equals the upper bound has
exactly one slot.

* Your FlexibleArray is not the Array ADT we did in lecture; it doesn't
have to support the exact same set of operations.



Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 3: Sparse Arrays (35%)

A sparse array is an array in which relatively few positions have values
that differ from the initial value set when the array was created. For
sparse arrays, it is wasteful to store the value of all positions explicitly
since most of them never change and take the default value of the
array. Instead, we want to store positions that have actually been

changed.

For this problem, write a class SparseArray that implements the Array
interface we developed in lecture (the same interface you used for
Problem 1 above). Do not modify the Array interface in any

way! Instead of using a plain Java array like we did for SimpleArray,
your SparseArray should use a linked list of Node objects to store
values, similar to the ListArray from lecture (and available in ).
However, your nodes no longer store just the data at a certain position,
they also store the position itself!



https://github.com/schatzlab/datastructures2018/tree/master/lectures/05.Iterators

Introduction to Checkstyle
http://checkstyle.sourceforge.net/

mschatz@schatzmac: 23:11:48: ~/Dropbox/Document s/Teaching/2016/JHU/DatasStructures/Lectures/@2 . Procticals § jova -jar checkstyle-6.15-
gll.jor -c cs226_checks.xml Helloworld.jovo

Starting oudit...

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DatasStructures/Lectures/@2. Practicals/HelloWorld, java:1l: Missing a Javad
oc comment. [JavadocType]

[ERROR] /Users/mschatz/Dropbox/Documents./teaching/2016/JHU/DataStructures/Lectures/@2. Praocticals/Helloworld. java:1:1: Utility class
es should not have a public or defoult constructor. [HideUtilityClassConstructor]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/92. Procticals/Helloworld. jova:2:1: "{" at column
1 should be on the previous line. [LeftCurly)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Practicals/Helloorld. java:3: 'method def mod
ifier' have incorrect indentotion level 2, expected level should be 4, [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Procticals/Hel loWorld. jova:3:3: Missing a Jav
odoc comment. [JavadocMethod)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2 . Procticals/Helloorld, java:3:33: 'String” is
followed by whitespoce. [NoWhitespaceAfter]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Praocticals/HelloWorld. jova:4: "method def lcu
rly’ have incorrect indentation level 2, expected level should be 4. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/@2. Procticals/Helloworld. jova:4:3: "{' ot column
3 should be on the previous line. [LeftCurly)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DatasStructures/Lectures/@2. Practicals/Helloworld, jova:S: "method call’ ¢
hild have incorrect indentation level 4, expected level should be 8. [Indentation)

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/92. Practicals/Helloworld. java:S: 'method def' ch
ild have incorrect indentation level 4, expected level should be 8. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02. Procticals/Helloorld. jova:6: "method def rcu
rly’ have incorrect indentation level 2, expected level should be 4. [Indentation)

Audit done.

Checkstyle ends with 11 errors.

mschatz@schatzmoc: 23:11:52: ~/Dropbox/Documents/Teaching/2016/JHU/DataStructures/Lectures/@2 . Procticals § l

$ java -jar datastructures2018/resources/checkstyle-8.12-all.jar \
-c datastructures2018/resources/cs226 checks.xml HelloWorld. java
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Growth of functions

[Horrible] (Bad] Fai | [Good] [Excelient]

http://bigocheatsheet.com/




Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");

return;
}
int len = Integer.parselnt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+l; }

permute(keys, 0, len-1);
System.err.println("There are + numtries
+ " permutations of " + len + " items.");

$ for i in "seq 1 207 ;
do echo $i; java Permute $i > $i.log ; done
1
There are 1 permutations of 1 items.
2
There are 2 permutations of 2 items.
3
There are 6 permutations of 3 items.
4
There are 24 permutations of 4 items.
5
Jjéb There are 120 permutations of 5 items.




Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

Ig(1,000,000) = 20

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
I 05 09 13 15 26 28 33 38 58 71 81 93 96 96 99
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Selection Sort
Quickly sort these numbers into ascending order:

14,29,6,31,39,64,78,50, 13,63,61, 19

Find the minimum

O(N)

14,29 6,31, 39, 64, 78,50, 13,63,61, 19

Flip\t into the right place o(1)
6,29, 14,31,39, 64,78,50, 13, 63,61, 19

Find the next smallest

6.29,14,31,39, 64,78,50/13 63,61, 19 O(N-1)
Flipiti r ce

6,13, 14,31, 39, 64,78,50.29, 63, 61, 19 O(1)
Find the next smallest

6,13/14 31,39, 64,78,50,29, 63,61, 19 O(N-2)

Flip it 3L1to the right place
6,13,14,31,39,64,78,50,29,63,61, 19 O(1)




Selection Sort Analysis

public static void selectionSort(int[] a) {
for (int 1 = 0; i < a.length - 1; i++) {
int min = 1;
for (int j =1 + 1; j < a.length; j++) {
if (a[j] < a[min]) {

min = j;
}
}
int t = a[i]; a[i] = a[min]; a[min] = t;
}
}

Analysis
* OQuterloop: i=0ton
* Inner loop: j=iton

« Total Running time: Outer * Inner = O(n?)

n | n
T:n—l—(n—1)—|—(n—2)—|—---—|—3—|—2—|—1:Zz:
i=1

2

(n+1)

= O(n?)



Selection Sort Analysis

public static void selectionSort(int[] a) {

for (int 1 = 0; i < a.length - 1; i++) {
int min = 1;
for (int j =1 + 1; j < a.length; j++) {

if (a[j] < a[min]) {

min = j;

} Formally you would prove
} the recurrence using
int t = a[i]; a[i] = a[min]; a[n jnduction: Discrete Math

class!

Requires almost no extra
space: In-place algorithm

Analysis “Feels slow” since inner

* Outerloop: i=0ton loop only seeks out one

* Inner loop: j=iton number (the next biggest)
« Total Running time: Outer * Inner = O(n?)

" nn+1
T=n+(n—1)+(n—2)+---+3+2+1:Zz:—( . )

1=1

= O(n?)



Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[14,29],6,31,39,64,78,50, 13,63,61,19  14,6,29,31,39,64,50,[78, 13],63,61, 19
[14,29],6,31,39,64,78,50, 13,63,61,19  14,6,29,31,39,64,50,[13,78],63,61, 19

14,[29,6], 31, 39,64,78,50,13,63,61, 19 14, 6,29,31,39,64,50, 13,[/8,63],61, 19
14, [6,29],31,39,64,78,50,13,63,61, 19 14, 6,29,31,39,64,50, 13,[63,/8],61, 19

14,6,[29,31],39,64,78,50,13,63,61, 19 14,6,29,31,39,64,50, 13,63,[/8,61], 19
14,6,[29,31],39,64,78,50,13,63,61, 19 14,6,29,31,39,64,50, 13,63,[61, /8], 19

14,6,29,[31,39],64,78,50, 13,63,61, 19
14,6,29,[31,39],64,78,50, 13,63,61, 19
14,6,29,31,[39,64],78,50, 13,63,61, 19
14,6,29,31,[39,64], 78,50, 13,63,61,19  14,6,29,31,39,64,50, 13,63,61, 19,
14,6,29,31,39,[64, 78], 50, 13, 63,61, 19
14,6,29,31,39,[64,78],50, 13, 63,61, 19

14,6,29,31,39,64,[/8,50],13,63,61, 19
14,6,29,31, 39,64,[50,/8],13,63,61, 19

14,6,29,31,39,64,50, 13,63,61,[/8, 19]
14, 6,29,31,39,64,50,13,63,61,[19, /8]



Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[14,6],29,31,39,64,50,13,63,6l, 19, 6,14,29,31,39,50, 13, [64, 63], 61, 19,
[6, 141,29, 31,39, 64, 50, 13, 63,61, 19, 6, 14,29,31,39,50, 13, [63,64], 61, 19,

6,[14,29],31,39, 64,50, 13,63,61, 19,
6,[14,29],31,39, 64,50, 13,63,61, 19,
6,14,[29,31],39, 64,50, 13,63,61, 19,
6,14,[29,31],39,64,50,13,63,61, 19, 6,14,29,31,39,50, 13,63,61,[64, 19],
6,14,29,[31,39],64,50, 13,63,61, 19, 6,14,29,31, 39,50, 13,63,61,[19,64],
6,14,29,[31,39], 64,50, 13,63,61, 19,

6,14,29,31,[39,64],50, 13,63,61, 19,
6,14,29,31,[39,64],50, 13,63,61, 19,

6,14,29,31,39,[64,50], 13,63,61, 19,
6, 14,29,31,39,[50,64], 13,63,61, 19,

6,14,29,31,39,50,[64, 13],63, 61, 19,
6,14,29,31,39,50,[13,64], 63,61, 19,

6,14,29,31,39,50, 13,63,[64,61], 19,
6,14,29,31,39,50,13,63,[61,64], 19,

6,14,29,31,39,50, 13,63,61, 19,



Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[6, 14],29,31,39,50,13,63,61, 19, How many passes will we need to do!?
6,[14,29],31,39,50,13,63,61, 19, O(n)
6,14,[29,31],39,50, 13,63,61, 19,

6,14,29,[31,39],50, 13,63,61, 19,

How much work does each pass take?
6,14,29,31,[39,50],13,63,61, 19,

6,14,29,31,39,[50, 13], 63, 61, 19, Ofn)
6,14,29,31,39,[13,50],63,61, 19,

6, 14,29,31, 39, 13,[50,63],61, 19, What is the total amount of work?
6,14,29,31,39,13,50,[63,61], 19, n passes, each requiring O(n) => O(n?)
6,14,29,31,39,13,50,[61,63], 19,

6, 14,29,31,39,13,50,61,[63, 19], Note, you might get lucky and finish
6,14,29,31,39,13,50,61,[19, 63], much sooner than this
6,14,29,31,39,13,50,61, 19, “Feels faster’”: multiple swaps on

the inner loop, but...

“Feels slow’ because inner loop
sweeps entire list to move one
number into sorted position



Insertion Sort

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50,13,63,61, 19

|4, ?2, 6,31,39,64,78,50,13,63,61,19 Base Case: Declare the first element as a
14, ,31,39,64,78,50,13,63,61,19 correctly sorted array

644,29, 31,39,64,78, 50, 13,63,61, 19 3 Repeat: Iteratively add the next unsorted
6, 14,29,31,39,64,78,50,13,63,61, 19 ‘CC') element to the partially sorted array at the
6, 14,29, 31, 3%, 63, 78,50, 13,63,61, 19 g correct position

6,14,29,31,39,64,78,50, 13,63,61, |9 -g
6,14,29,31,39,64,78,50, 13,63,61, 19

Slide the unsorted element into the correct

6. 14,29,31,39, 56754, 78. 13, 63,61, 19 position:

6 134TA79-IT-39.50 64.75.63. B 14,29,6,31,39,64,78,50, 13,63, 61,19
6,13, I4,29,3I,39,50,6k,/6431},6|, 19 ?6,29,%39,64,78,50, 13,63,61,19
6,'3,'4,29,3',39,50,6 ’ 4_&181—!-9 ,|4,29,3|,39,64,78,50,|3,63,6|,|9

6,13, 14, 19,729, 31, 39,50, 61, 63, 64,78 “ ,
Feels fast” because you always have

Sorted elements a partially sorted list, but some
insertions will be expensive



Insertion Sort

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50, 13,63,61, 19

unsorted rest of array

unsorted rest of array
unsorted rest of array
unsorted rest of array
unsorted rest of array
unsorted rest of array

unsorted rest of array

unsorted rest of array




Quadratic Sorting Algorithms

Selection Sort Bubble Sort Insertion Sort
Move next smallest Swap up bigger Slide next value into
into position values over smaller correct position




Sorting Race!

Problem 2: All Sorts of Sorts (S0%)
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roartace svalatie on Paunay

PRLic Interface SortingAlgerithe«T sutends Comparadie«Trs (
void sart{Array<T> array):
String same():
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Part 3: Stacks




Fibonacci Sequence

public static int fib(int n) {
if (n<=1){
return |;
}
return fib(n-1) +
fib(n-2);




Introducing the call stack

g
Return val to f line 400

int g(double a) { a=28
return h(a*2); val = <h(56)>
}

static public void main() {
int val = £(15); main
System.out.println(val); val = <f(15)>




Introducing the call stack

The call stack keeps track of the local variables and
return location for the current function. This makes it
possible for program execution to jump from function to
function without loosing track of where the program
should resume

A stack frame records the information for each function
call, with local variables and the address of where to
resume processing after this function is complete.

=> Take a computer architecture course for more info

Importantly the computer only needs to add or

remove items from the very top of the stack,

making it easy for the computer to keep track of
where to go next!

More generally, stacks are a very useful data

structure for Last-In-First-Out (LIFO) processing main
val = <f(15)>




Stacks

Stacks are very simple but surprisingly
useful data structures for storing a
collection of information
* Any number of items can be stored, but you
can only manipulate the top of the stack:
* Push:adds a new element to the top
* Pop: takes off the top element
* Top: Lets you peek at top element’s
value without removing it from stack

Many Applications
* In hardware call stack

* Memory management systems
* Parsing arithmetic instructions:

((x+3) / (x+9)) * (42 * sin(x))

* Back-tracing, such as searching within a maze
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Fibonacci Sequence
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Fibonacci Sequence
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Fibonacci Sequence
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Fibonacci Sequence
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Fibonacci Sequence
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Stack ADT

adt Stack
uses Any, Boolean
defines Stack<T: Any>
operations
new:
push:
pop:
top:
empty:
precondltlons

aXlOInS




Stack ADT

adt Stack Note: pop(push(s,t)) =s
uses Any, Boolean is comparing the whole
defines Stack<T: Any> stack, but we havent
operations defined what it means
new: -—--> Stack<T> for one stack to equal
push: Stack<T> x T ---> Stack<T>  another!
pop: Stack<T> ---> Stack<T>
top: Stack<T> —---> T

i

empty: Stack<T>

preconditions

—-—=-> Boolean

pop(s): not empty(s)

top(s): not empty(s)
axioms

empty(new())

not empty(push(s, t))

top(push(s, t))
pop(push(s, t))

Relax this flaw by considering the
axioms as rewrite rules:

top(pop(push(push(new(), 1), 2))) = 1
-t Can be rewritten as
= s top(push(new(), 1)) = 1
and finally to

1=1



Stack ADT

adt Stack
uses Any, Boolean
defines Stack<T: Any>
operations
new: ---> Stack<T>

top(push(s, t)) =t
pop(push(s, t)) = s




Stack Interface

public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

How would you implement
this interface? -6

5
Why? 3
:
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Stack isplesented using a linked list,

ALl operations take 0(1) time in the worst case; however
each push() results in a mew object being allocated which
may be imappropriate for some applicatices.

@paran <T> Elesent type.
./
public class ListStack<T> isplesents Stack<T> {
private static class Node<T> {
Node<T> next;
T data;

private Node<T» first;

S
Create an espty stack.

./
)ﬂllc ListStack() {

Override
public Y‘up() throws EsptyException {
try
return this.first.data;
} cateh (NullPointerException e) {
throw new EmptyException();

}

QOverride

'.l:‘ v:u pop() throws EmptyException {
o this.first = this.first.mext;
} catch (NullPointerException e) {

throw new EmptyException();
}
@Override

peblic veid push(T t) {
Node<T> n = new Node<T>();

this.first = n;

override
public boolean espty() {

: return this.first == null; -
Override
peblic String toString() {
String s = "}
for (Node<T> m = this.first; a I= null; n = a.next) {
s += n.data.toStringl);
if (n.next != null) {
g, “y
}
$ = "%
) retura s;

Stack isplesented using » growing array.

ALL cperations except pushi) take O(1) tise is the worst
case; push() takes O(1) amortized time because the array
may need to be resized; however, compared to ListStack,
fewer push() cperations result in cbjects Beisg allocated.

retern ﬁh..hlm.u - l"

- %
e
=

®verrige ¢
void pepl) throws EmptyException
ir (tlh empty()) {
throw new EsptyExceptiond);

this,used -= 1;

private tuh- fulll) {
R retern this.data.length == this.used;

private void growl) {
T bigger = (Y1) new OBjectthis.cata.length = 2);
for (ist 1 = 2; § < this,used; ies) {
bigger(i) = this.datali);

this.dats = bigger;

@Overrice
void push(T t) {
Af (ehis.tull())
this.growl);

}
this.datalthis.used] = t;
this,used += 1;

verride
peblic String toString() {
Str. s=m~["}
for ( 1w this.used = 1 L »e 07 =) {
s o= this.datali).tesString();
itia>e{
g, "3

}

N

g



Stack Interface

public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

How would you *test*
the implementation? -6

5
Why? 3
;
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Introducing JUnit




Lecture 2: SimpleCounter.java

public class SimpleCounter implements Counter {

public static void main(String[] args) {

Counter ¢ = new SimpleCounter();
assert c.value() == 0;
System.out.println("Counter is now: " + c.value());
c.up();
assert c.value() == 1;
System.out.println("Counter is now: " + c.value());
c.down();
assert c.value() == 0;
System.out.println("Counter is now: " + c.value());
c.down();
c.up();
c.up();
c.up();
System.out.println("Counter is now: " + c.value());
assert c.value() == 2;
}
}
Asserts are very useful for testing, but are very limited especially
because first failed assert kills the entire progaram ®




Lecture 2: SimpleCounter.java

public static void main(String[] args) {
MyArray a = new MyArray(5, "Mike");

a.put(3, "Peter");
a.put(2, 1234);

for (int i = 0; i < a.length(); i++) {
System.out.println("a[" + 1 + "]: " +
a.get(i) + " " + a.get(i).getClass());
}
try {
System.out.println("a[" + 57 + "]: " + a.get(57));

} catch (IndexException e) {
System.out.println("Caught IndexException (as expected)");

}

Printing is useful while developing, but becomes
unscalable in large programs with lots of methods to test




Introducing JUnit
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public void mewArraylistsHaveNoE lements() {
assertThot(nem Arraylist().size(), is(9));

}

: ®
,Quc void sizeReturnsNusberOfElements() {

List instonce « mew Arraylist();
instonce, odd(new Object());
instance . odd(new Object());

Annotations

Start by marking your tests with m
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Test Cases




JUnit According to Peter ©

So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

* For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing
code as actual program code, and so the principles you use to make
regular code easier to read (splitting things into methods and classes, etc.)
should also apply to test code.

* Also, JUnit allows you to run all your test cases every time, it doesn’t
stop at the first failing test case like assert does. This way you can get
feedback about multiple failed tests all at once.

* Finally, lots of companies expect graduates to have some experience
with testing frameworks, so why not pick it up now? Note that testing is
not just for software developers anymore, increasingly people working
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

So it’s a really useful skill to have on your list.




JUnit According to Peter ©

So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

* For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing

From HW3 on out, when we say <)
“write test cases”

_— N

' ' as part of an assignment, we mean
f “write JUnit 4 test cases”
. as descnbed here. e

not just for software developers anymore mcreasmgly people workmg
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

= So it’s a really useful skill to have on your list.




Next Steps

. Work on HW?2

2. Check on Piazza for tips & corrections!




