
CS 600.226: Data Structures
Michael Schatz

Sept 19 2018
Lecture 9. Stacks

Agenda
1. Review HW2

2. Recap on Sorting

3. Stacks

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!
Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview
The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use Checkstyle with the correct configuration file
from Github!

http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 1: Revenge of Unique (30%)
You wrote a small Java program called Unique for Assignment 1. The
program accepted any number of command line arguments (each of which
was supposed to be an integer) and printed each unique integer it
received back out once, eliminating duplicates in the process.

For this problem, you will implement a new version of Unique called
UniqueRevenge with two major changes:

• First, you are no longer allowed to use Java arrays (nor any other
advanced data structure), but you can use our Array interface and our
SimpleArray implementation from lecture (also available on github)

• Second, you're going to modify the program to read the integers from
standard input instead of processing the command line.

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 2: Flexible Arrays (20%)
Develop an algebraic specification for the abstract data type

FlexibleArray which works like the existing Array ADT for the most

part except that both its lower and its upper index bound are set when

the array is created. The lower as well as upper bound can be any integer,

provided the lower bound is less than or equal the upper bound.

Write up the specification for FlexibleArray in the format we used in lecture

and comment on the design decisions you had to make. Also, tell us what

kind of array you prefer and why.

Hints
• A FlexibleArray for which the lower bound equals the upper bound has

exactly one slot.

• Your FlexibleArray is not the Array ADT we did in lecture; it doesn't

have to support the exact same set of operations.

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 3: Sparse Arrays (35%)
A sparse array is an array in which relatively few positions have values
that differ from the initial value set when the array was created. For
sparse arrays, it is wasteful to store the value of all positions explicitly
since most of them never change and take the default value of the
array. Instead, we want to store positions that have actually been
changed.

For this problem, write a class SparseArray that implements the Array
interface we developed in lecture (the same interface you used for
Problem 1 above). Do not modify the Array interface in any
way! Instead of using a plain Java array like we did for SimpleArray,
your SparseArray should use a linked list of Node objects to store
values, similar to the ListArray from lecture (and available in github).
However, your nodes no longer store just the data at a certain position,
they also store the position itself!

https://github.com/schatzlab/datastructures2018/tree/master/lectures/05.Iterators

Introduction to Checkstyle
http://checkstyle.sourceforge.net/

$ java -jar datastructures2018/resources/checkstyle-8.12-all.jar \
-c datastructures2018/resources/cs226_checks.xml HelloWorld.java

Agenda
1. Review HW2

2. Recap on Sorting

3. Stacks

http://bigocheatsheet.com/

Growth of functions

Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");
return;

}

int len = Integer.parseInt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+1; }
permute(keys, 0, len-1);
System.err.println("There are " + numtries

+ " permutations of " + len + " items.");
}

}

$ for i in `seq 1 20`;
do echo $i; java Permute $i > $i.log ; done

1
There are 1 permutations of 1 items.
2
There are 2 permutations of 2 items.
3
There are 6 permutations of 3 items.
4
There are 24 permutations of 4 items.
5
There are 120 permutations of 5 items.

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

lg(1,000,000) = 20

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Selection Sort
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

Find the minimum
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

6, 29, 14, 31, 39, 64, 78, 50, 13, 63, 61, 19
Flip it into the right place

6, 29, 14, 31, 39, 64, 78, 50, 13, 63, 61, 19
Find the next smallest

6, 13, 14, 31, 39, 64, 78, 50, 29, 63, 61, 19
Flip it into the right place

6, 13, 14, 31, 39, 64, 78, 50, 29, 63, 61, 19
Find the next smallest

6, 13, 14, 31, 39, 64, 78, 50, 29, 63, 61, 19
Flip it into the right place

…

O(N)

O(1)

O(N-1)

O(1)

O(N-2)

O(1)

Selection Sort Analysis

Analysis
• Outer loop: i = 0 to n
• Inner loop: j = i to n
• Total Running time: Outer * Inner = O(n2)

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Selection Sort Analysis

Analysis
• Outer loop: i = 0 to n
• Inner loop: j = i to n
• Total Running time: Outer * Inner = O(n2)

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Requires almost no extra
space: In-place algorithm

“Feels slow” since inner
loop only seeks out one
number (the next biggest)

Formally you would prove
the recurrence using
induction: Discrete Math
class!

Bubble sort
Sort these values by bubbling up the next largest value

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[14, 29], 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
[14, 29], 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

14, [29, 6], 31, 39, 64, 78, 50, 13, 63, 61, 19
14, [6, 29], 31, 39, 64, 78, 50, 13, 63, 61, 19

14, 6, [29, 31], 39, 64, 78, 50, 13, 63, 61, 19
14, 6, [29, 31], 39, 64, 78, 50, 13, 63, 61, 19

14, 6, 29, [31, 39], 64, 78, 50, 13, 63, 61, 19
14, 6, 29, [31, 39], 64, 78, 50, 13, 63, 61, 19

14, 6, 29, 31, [39, 64], 78, 50, 13, 63, 61, 19
14, 6, 29, 31, [39, 64], 78, 50, 13, 63, 61, 19

14, 6, 29, 31, 39, [64, 78], 50, 13, 63, 61, 19
14, 6, 29, 31, 39, [64, 78], 50, 13, 63, 61, 19

14, 6, 29, 31, 39, 64, [78, 50], 13, 63, 61, 19
14, 6, 29, 31, 39, 64, [50, 78], 13, 63, 61, 19

14, 6, 29, 31, 39, 64, 50, [78, 13], 63, 61, 19
14, 6, 29, 31, 39, 64, 50, [13, 78], 63, 61, 19

14, 6, 29, 31, 39, 64, 50, 13, [78, 63], 61, 19
14, 6, 29, 31, 39, 64, 50, 13, [63, 78], 61, 19

14, 6, 29, 31, 39, 64, 50, 13, 63, [78, 61], 19
14, 6, 29, 31, 39, 64, 50, 13, 63, [61, 78], 19

14, 6, 29, 31, 39, 64, 50, 13, 63, 61, [78, 19]
14, 6, 29, 31, 39, 64, 50, 13, 63, 61, [19, 78]

14, 6, 29, 31, 39, 64, 50, 13, 63, 61, 19, 78

On the first pass, sweep list
to bubble up the largest element
(also move smaller items down)

Bubble sort
Sort these values by bubbling up the next largest value

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[14, 6], 29, 31, 39, 64, 50, 13, 63, 61, 19, 78
[6, 14], 29, 31, 39, 64, 50, 13, 63, 61, 19, 78

6, [14, 29], 31, 39, 64, 50, 13, 63, 61, 19, 78
6, [14, 29], 31, 39, 64, 50, 13, 63, 61, 19, 78

6, 14, [29, 31], 39, 64, 50, 13, 63, 61, 19, 78
6, 14, [29, 31], 39, 64, 50, 13, 63, 61, 19, 78

6, 14, 29, [31, 39], 64, 50, 13, 63, 61, 19, 78
6, 14, 29, [31, 39], 64, 50, 13, 63, 61, 19, 78

6, 14, 29, 31, [39, 64], 50, 13, 63, 61, 19, 78
6, 14, 29, 31, [39, 64], 50, 13, 63, 61, 19, 78

6, 14, 29, 31, 39, [64, 50], 13, 63, 61, 19, 78
6, 14, 29, 31, 39, [50, 64], 13, 63, 61, 19, 78

6, 14, 29, 31, 39, 50, [64, 13], 63, 61, 19, 78
6, 14, 29, 31, 39, 50, [13, 64], 63, 61, 19, 78

6, 14, 29, 31, 39, 50, 13, [64, 63], 61, 19, 78
6, 14, 29, 31, 39, 50, 13, [63, 64], 61, 19, 78

6, 14, 29, 31, 39, 50, 13, 63, [64, 61], 19, 78
6, 14, 29, 31, 39, 50, 13, 63, [61, 64], 19, 78

6, 14, 29, 31, 39, 50, 13, 63, 61, [64, 19], 78
6, 14, 29, 31, 39, 50, 13, 63, 61, [19, 64], 78

6, 14, 29, 31, 39, 50, 13, 63, 61, 19, 64, 78

On the second pass, sweep list
to bubble up the second largest element

(also move smaller items down)

Bubble sort
Sort these values by bubbling up the next largest value

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[6, 14], 29, 31, 39, 50, 13, 63, 61, 19, 64, 78
6, [14, 29], 31, 39, 50, 13, 63, 61, 19, 64, 78
6, 14, [29, 31], 39, 50, 13, 63, 61, 19, 64, 78
6, 14, 29, [31, 39], 50, 13, 63, 61, 19, 64, 78
6, 14, 29, 31, [39, 50], 13, 63, 61, 19, 64, 78
6, 14, 29, 31, 39, [50, 13], 63, 61, 19, 64, 78
6, 14, 29, 31, 39, [13, 50], 63, 61, 19, 64, 78
6, 14, 29, 31, 39, 13, [50, 63], 61, 19, 64, 78
6, 14, 29, 31, 39, 13, 50, [63, 61], 19, 64, 78
6, 14, 29, 31, 39, 13, 50, [61, 63], 19, 64, 78
6, 14, 29, 31, 39, 13, 50, 61, [63, 19], 64, 78
6, 14, 29, 31, 39, 13, 50, 61, [19, 63], 64, 78

6, 14, 29, 31, 39, 13, 50, 61, 19, 63, 64, 78

On the third pass, sweep list
to bubble up the third largest element

How many passes will we need to do?

How much work does each pass take?

What is the total amount of work?

O(n)

O(n)

n passes, each requiring O(n) => O(n2)

Note, you might get lucky and finish
much sooner than this

“Feels faster”: multiple swaps on
the inner loop, but…
“Feels slow” because inner loop
sweeps entire list to move one
number into sorted position

Insertion Sort
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 50, 64, 78, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 50, 64, 78, 63, 61, 19
6, 13, 14, 29, 31, 39, 50, 63, 64, 78, 61, 19
6, 13, 14, 29, 31, 39, 50, 61, 63, 64, 78, 19
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

Sorted elements

To
 b

e
so

rte
d

Base Case: Declare the first element as a
correctly sorted array

Repeat: Iteratively add the next unsorted
element to the partially sorted array at the
correct position

Slide the unsorted element into the correct
position:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
14, 6, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19

“Feels fast” because you always have
a partially sorted list, but some
insertions will be expensive

Insertion Sort
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

Outer loop: n elements to move into correct position
Inner loop: O(n) work to move element into correct position

Total Work:
O(n2)

sorted i unsorted rest of array?

< > unsorted rest of arrayi?

< > unsorted rest of arrayi?

< > unsorted rest of arrayi?

< > unsorted rest of arrayi?

sorted unsorted rest of array

unsorted rest of arraysorted

sorted unsorted rest of arrayi

Quadratic Sorting Algorithms

Insertion Sort
Slide next value into

correct position

Bubble Sort
Swap up bigger

values over smaller

Selection Sort
Move next smallest

into position

Asymptotically all three have the same performance
… but can perform significantly different on some datasets

Sorting Race!

Sorting Race!

Do you think quadratic sort is the best you can do?

;-)

Part 3: Stacks

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

public static int fib(int n) {
if (n <= 1) {
return 1;

}
return fib(n-1) +

fib(n-2);
}

The computer has to keep track of
all of these function calls and

keep everything in order!

Introducing the call stack
100: int f(int a) {
101: int y = 42;
102: int z = 13;

…
400: int x = g(13 + a);

…
497: return x + y + z;
498: }
499:
500: int g(double a) {
501: return h(a*2);
502: }
503:
504: int h(double x) {
505: int k = (int) x;
506: return k+1;
507: }
508:
509: static public void main() {
510: int val = f(15);
510: System.out.println(val);
511: }

f
Return val to main line 510
a = 15
y = 42
z = 13
x = <g(28)>

main
val = <f(15)>

g
Return val to f line 400
a=28
val = <h(56)>

h
Return val to g line 501
x=56
k=56
val = 57

Introducing the call stack

The call stack keeps track of the local variables and
return location for the current function. This makes it
possible for program execution to jump from function to
function without loosing track of where the program
should resume

A stack frame records the information for each function
call, with local variables and the address of where to
resume processing after this function is complete.

=> Take a computer architecture course for more info
f
Return val to main line 510
a = 15
y = 42
z = 13
x = <g(28)>

main
val = <f(15)>

g
Return val to f line 400
a=28
val = <h(56)>

h
Return val to g line 501
x=56
k=56
val = 57

Importantly the computer only needs to add or
remove items from the very top of the stack,
making it easy for the computer to keep track of
where to go next!

More generally, stacks are a very useful data
structure for Last-In-First-Out (LIFO) processing

Stacks
Stacks are very simple but surprisingly
useful data structures for storing a
collection of information
•Any number of items can be stored, but you
can only manipulate the top of the stack:

• Push: adds a new element to the top
• Pop: takes off the top element
• Top: Lets you peek at top element’s

value without removing it from stack

Many Applications
• In hardware call stack
• Memory management systems
• Parsing arithmetic instructions:

((x+3) / (x+9)) * (42 * sin(x))
• Back-tracing, such as searching within a maze

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

F(2)
a = F(1)

Fibonacci Sequence

1 f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

F(2)
a = F(1)

F(1)
return 1

Fibonacci Sequence

1 f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

F(2)
b = F(0)

Fibonacci Sequence

1 1

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

F(2)
b = F(0)

F(0)
return 1

Fibonacci Sequence

1 1

2 f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

F(2)
return 2

Fibonacci Sequence

1 1

2 f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
a = F(2)

Fibonacci Sequence

1 1

2 f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
b = F(1)

Fibonacci Sequence

1 1

2 1 f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
b = F(1)

F(1)
return 1

Fibonacci Sequence

1 1

2 1 f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
a = F(3)

F(3)
return 3

Fibonacci Sequence

1 1

2 1 f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
b = F(2)

Fibonacci Sequence

1 1

2 1 f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
b = F(2)

F(2)
A = F(1)

Fibonacci Sequence

1 1

2 1 1 f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
b = F(2)

F(2)
A = F(1)

F(1)
return 1

Fibonacci Sequence

1 1

2 1 1 f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
b = F(2)

F(2)
b = F(0)

Fibonacci Sequence

1 1

2 1 1 1 f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
b = F(2)

F(2)
b = F(0)

F(0)
return 1

Fibonacci Sequence

1 1

2 1 1 1 f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

3 2 f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
b = F(2)

F(2)
return 2

Fibonacci Sequence

1 1

2 1 1 1 f(1) f(0) f(1) f(0)

5 f(3) f(3) f(2)

3 2 f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

F(4)
return 5

Fibonacci Sequence

1 1

2 1 1 1 f(1) f(0) f(1) f(0)

5 f(3) f(3) f(2)

3 2 f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

F(6)
a = F(5)

F(5)
a = F(4)

Equivalent to running
through a maze and
always keeping your
right hand on the wall

Notice we only look at
the top of the stack to
keep track of where we
have been and were
we should go next!

Stack ADT
adt Stack

uses Any, Boolean
defines Stack<T: Any>
operations

new: ---> Stack<T>
push: Stack<T> x T ---> Stack<T>
pop: Stack<T> ---> Stack<T>
top: Stack<T> ---> T
empty: Stack<T> ---> Boolean

preconditions
pop(s): not empty(s)
top(s): not empty(s)

axioms
empty(new())
not empty(push(s, t))
top(push(s, t)) = t
pop(push(s, t)) = s

Stack ADT
Note: pop(push(s,t)) = s
is comparing the whole
stack, but we havent
defined what it means
for one stack to equal
another!

Relax this flaw by considering the
axioms as rewrite rules:

top(pop(push(push(new(), 1), 2))) = 1

Can be rewritten as
top(push(new(), 1)) = 1

and finally to

1=1

adt Stack
uses Any, Boolean
defines Stack<T: Any>
operations

new: ---> Stack<T>
push: Stack<T> x T ---> Stack<T>
pop: Stack<T> ---> Stack<T>
top: Stack<T> ---> T
empty: Stack<T> ---> Boolean

preconditions
pop(s): not empty(s)
top(s): not empty(s)

axioms
empty(new())
not empty(push(s, t))
top(push(s, t)) = t
pop(push(s, t)) = s

adt Stack
uses Any, Boolean
defines Stack<T: Any>
operations

new: ---> Stack<T>
push: Stack<T> x T ---> Stack<T>
pop: Stack<T> ---> Stack<T>
top: Stack<T> ---> T
empty: Stack<T> ---> Boolean

preconditions
pop(s): not empty(s)
top(s): not empty(s)

axioms
empty(new())
not empty(push(s, t))
top(push(s, t)) = t
pop(push(s, t)) = s

Stack ADT

You might be tempted to try to derive a correct
equality operation, or add additional constraints (like

maximum number of elements that the stack can
store) but the ADT gets very messy

See lecture notes for details

Instead, lets focus on implementation instead

Stack Interface
public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

}

How would you implement
this interface?

Why?

ListStack

vs.

ArrayStack

Which is better?

Why?

Stack Interface
public interface Stack<T> {

// checks if empty
boolean empty();

// peeks at top value without removing
T top() throws EmptyException;

// removes top element
void pop() throws EmptyException;

// adds new element to top of stack
void push(T t);

}

How would you *test*
the implementation?

Why?

Introducing JUnit

Lecture 2: SimpleCounter.java
public class SimpleCounter implements Counter {

public static void main(String[] args) {
Counter c = new SimpleCounter();
assert c.value() == 0;
System.out.println("Counter is now: " + c.value());
c.up();
assert c.value() == 1;
System.out.println("Counter is now: " + c.value());
c.down();
assert c.value() == 0;
System.out.println("Counter is now: " + c.value());
c.down();
c.up();
c.up();
c.up();
System.out.println("Counter is now: " + c.value());
assert c.value() == 2;

}
}

Asserts are very useful for testing, but are very limited especially
because first failed assert kills the entire progaram L

Lecture 2: SimpleCounter.java
public static void main(String[] args) {

MyArray a = new MyArray(5, "Mike");

a.put(3, "Peter");
a.put(2, 1234);

for (int i = 0; i < a.length(); i++) {
System.out.println("a[" + i + "]: " +

a.get(i) + " " + a.get(i).getClass());
}

try {
System.out.println("a[" + 57 + "]: " + a.get(57));

} catch (IndexException e) {
System.out.println("Caught IndexException (as expected)");

}
}

Printing is useful while developing, but becomes
unscalable in large programs with lots of methods to test

Introducing JUnit

Sample Report

JUnit According to Peter J
So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

• For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing
code as actual program code, and so the principles you use to make
regular code easier to read (splitting things into methods and classes, etc.)
should also apply to test code.

• Also, JUnit allows you to run all your test cases every time, it doesn’t
stop at the first failing test case like assert does. This way you can get
feedback about multiple failed tests all at once.

• Finally, lots of companies expect graduates to have some experience
with testing frameworks, so why not pick it up now? Note that testing is
not just for software developers anymore, increasingly people working
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

So it’s a really useful skill to have on your list.

JUnit According to Peter J
So why use a testing framework like JUnit instead of writing the tests
like we did so far, using Java’s assert instruction and a main method
with the test code in it?

• For one thing, JUnit allows you to modularize your tests better. It’s
not uncommon for large software projects to have just as much testing
code as actual program code, and so the principles you use to make
regular code easier to read (splitting things into methods and classes, etc.)
should also apply to test code.

• Also, JUnit allows you to run all your test cases every time, it doesn’t
stop at the first failing test case like assert does. This way you can get
feedback about multiple failed tests all at once.

• Finally, lots of companies expect graduates to have some experience
with testing frameworks, so why not pick it up now? Note that testing is
not just for software developers anymore, increasingly people working
with software developers but who are themselves not software
developers will be asked to contribute to testing a certain application
being developed by their company.

So it’s a really useful skill to have on your list.

From HW3 on out, when we say
“write test cases”

as part of an assignment, we mean
“write JUnit 4 test cases”

as described here.

Next Steps

1. Work on HW2

2. Check on Piazza for tips & corrections!

