CS 600.226: Data Structures
Michael Schatz

Sept 172018
Lecture 8. Sorting

Agenda

I. Review HW I
2. Introduce HW 2

3. Recap on complexity

4. Sorting

Assignment |: Due Friday Sept 14 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment01/assignment01.md

Assignment 1: Warming Up

Out on: September 7, 2016
Due by: September 14, 2016 before 10:00 pm
Collaboration: None
Grading:
o Functionality 65%
o ADT Solution 30%
o Solution Design and READMDE 5%
o Style 0%

Overview

The first assignment is mostly a warmup exercise to refresh your knowledge of Java and an ADT problem to start you thinking more abstractly
about your data.

GradeScope.com
Entry Code: MDJYER

o0 e < M « gradescope.com v t v +

Submit Programming Assignment

© Upload all files for your submission

SUBMISSION METHOD

@® L uUpload QO OGitHub (O ¥ Bitbucket

Add files via Drag & Drop or Browse Files.

NAME SIZE PROGRESS x

BasicCounter.java 0.4 KB
EvenCounter.java 0.4 KB
FlexibleCounter.java 14 KB
PolyCount.java 2.3 KB
ResetableCounter.java 0.3KB
TenCounter.java 0.6 KB
Unique.java 21KB

Make sure to upload the README and ListADT.txt files too!

Agenda

I. Review HW I
2. Introduce HW 2

3. Recap on complexity

4. Sorting

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!

Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:
Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview

The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use with the correct configuration file
from !

http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 1: Revenge of Unique (30%)

You wrote a small Java program called Unique for Assignment 1. The
program accepted any number of command line arguments (each of which
was supposed to be an integer) and printed each unique integer it
received back out once, eliminating duplicates in the process.

For this problem, you will implement a new version of Unique called
UniqueRevenge with two major changes:

» First, you are no longer allowed to use Java arrays (nor any other
advanced data structure), but you can use our Array interface and our
SimpleArray implementation from lecture (also available on github)

« Second, you're going to modify the program to read the integers from
standard input instead of processing the command line.

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 2: Flexible Arrays (20%)

Develop an algebraic specification for the abstract data type

FlexibleArray which works like the existing Array ADT for the most

part except that both its lower and its upper index bound are set when
the array is created. The lower as well as upper bound can be any integer,
provided the lower bound is less than or equal the upper bound.

Write up the specification for FlexibleArray in the format we used in lecture
and comment on the design decisions you had to make. Also, tell us what
kind of array you prefer and why.

Hints

« AFlexibleArray for which the lower bound equals the upper bound has
exactly one slot.

* Your FlexibleArray is not the Array ADT we did in lecture; it doesn't
have to support the exact same set of operations.

Assignment 2: Due Friday Sept 21 @ 10pm

https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 3: Sparse Arrays (35%)

A sparse array is an array in which relatively few positions have values
that differ from the initial value set when the array was created. For
sparse arrays, it is wasteful to store the value of all positions explicitly
since most of them never change and take the default value of the
array. Instead, we want to store positions that have actually been

changed.

For this problem, write a class SparseArray that implements the Array
interface we developed in lecture (the same interface you used for
Problem 1 above). Do not modify the Array interface in any

way! Instead of using a plain Java array like we did for SimpleArray,
your SparseArray should use a linked list of Node objects to store
values, similar to the ListArray from lecture (and available in).
However, your nodes no longer store just the data at a certain position,
they also store the position itself!

https://github.com/schatzlab/datastructures2018/tree/master/lectures/05.Iterators

Introduction to Checkstyle
http://checkstyle.sourceforge.net/

2. bash
mschatz@schatzmac:23:11:48:~/Dropbox/Documents/Teaching/2016/JHU/DataStructures/Lectures/02.Practicals $ java -jar checkstyle-6.15-
all.jar -c cs226_checks.xml HelloWorld.java
Starting audit...

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/Hellolorld. java:1: Missing a Javad

oc comment. [JavadocType]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld.java:1:1: Utility class

es should not have a public or default constructor. [HideUtilityClassConstructor]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld.java:2:1: '{' at column
1 should be on the previous line. [LeftCurly]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. java:3: 'method def mod

ifier' have incorrect indentation level 2, expected level should be 4. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. java:3:3: Missing a Jav

adoc comment. [JavadocMethod]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. java:3:33: 'String’ is
followed by whitespace. [NoWhitespaceAfter]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. j :4: 'method def lcu
rly' have incorrect indentation level 2, expected level should be 4. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. j :4:3: "{' at column
3 should be on the previous line. [LeftCurly]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. j :5: "method call’' c¢

hild have incorrect indentation level 4, expected level should be 8. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. :5: 'method def' ch

ild have incorrect indentation level 4, expected level should be 8. [Indentation]

[ERROR] /Users/mschatz/Dropbox/Documents/teaching/2016/JHU/DataStructures/Lectures/02.Practicals/HelloWorld. :6: 'method def rcu
rly' have incorrect indentation level 2, expected level should be 4. [Indentation]

Audit done.

Checkstyle ends with 11 errors.

mschatz@schatzmac:23:11:52:~/Dropbox/Documents/Teaching/2016/JHU/DataStructures/Lectures/@2.Practicals $ I

$ java -jar datastructures2018/resources/checkstyle-8.12-all.jar \
-c datastructures2018/resources/cs226 checks.xml HelloWorld. java

Agenda

I. Review HW I
2. Introduce HW 2

3. Recap on complexity

4. Sorting

Complexity Analysis

How long will the algorithm take when run on inputs of different sizes:

* If it takes X seconds to process 1000 items, how long will it take to
process twice as many (2000 items) or ten times as many (10,000 items)?

Generally looking for an order of magnitude estimate:

Constant time Linear time Quadradic time

-
4
o

' DT D D L S D T I S |
S 6 © © ©6 © © © © ©
4 L T T
— —-
) [T
NN NN RN NN
W W W W w
& & & &

Accessing 15t or
1 billionth entry

from an array Takes 10 times longer Nested loops grows
takes same to scan a list that has with the square of the
amount of time 10 times as many list length
values

Also very important for space characterization:

Sometimes doubling the number of elements will more than double the
amount of space needed

hL

Big-O Notation

Formally, algorithms that run in O(X) time means that the total
number of steps (comparisons and assignments) is a polynomial
whose largest term is X, aka asymptotic behavior
* f(x) € O(g(x)) if there exists c > 0 (e.g.,c = I) and x, (e.g., xo = 5)
such that f(x) < cg(x) whenever x = x,

* T(n) =33 =>0O(1l)

* T(n) = 5n-2 => O(n)

* T(n) =37n?+ 16n -8 => 0(n?)

* T(n) =99n3 + [2n? + 70000n + 2 => 0(n’)

* T(n) = 127n log (n) + log(n) + |6 =>0O(nlg n)
* T(n) =33 log (n) +8 => O(lg n)

* T(n) = 900%2" + |2n? + 33n + 54 => 0(2")

Informally, you can read Big-O(X) as “On the order of X”
* O(l) => On the order of constant time

O(n) => On the order of linear time

O(n?) => On the order of quadratic time

O(n?) => On the order of cubic time

O(lg n) => On the order of logarithmic time

O(n Ig n) => On the order of n log n time

Growth of functions

Fibonacci Sequence

public static int fib(int n) {
if (n <= 1) {
return 1;

}

return buz(n-1) + buz(n-2);

}

Fibonacci Sequence

public static int fib(int n) { *
if (n <= 1) {
return 1;

}

return buz(n-1) + buz(n-2); !

}

= Y B LB

-

| o o o R o

cd bl B

H : [How long would it take for F(7)?]
[What is the running time?]

Bottom-up Fibonacci Sequence

public static int fastbuz(int n) {
int [] s = new int[n+l];
s[0] = 1; s[1l] = 1;

for (int i = 2; i <= n; i++) {

s[i] = s[i-1] + s[i-2];

}

return s[n];

[How long will it take for F(7)?]
[What is the running time?]

O U v
RO U S

$ for i in “seq 1 507 ;

do echo $i; java

1
Scanning the

The value is:

Search took:
2
Scanning the

The value is:

Search took:

3
Scanning the

The value is:

Search took:

47
Scanning the

The value is:

Search took:
48
Scanning the

The value is:

Search took:
49
Scanning the

The value is:

Search took:
50

Scanning the

The value is:

Search took:

array of size:

1

Fib vs FastFib

$ for i in “seq 1 507 ;

Buz $i; done

1

3,515 nanoseconds

array of size:

2

2

3,849 nanoseconds

array of size:

3

3

4,034 nanoseconds

array of size:

512559680

11,723,622,912

array of size:

-811192543

19,283,637,425

array of size:

-298632863

33,963,346,264

array of size:

-1109825406

51,185,363,592

47

nanoseconds

48

nanoseconds

49

nanoseconds

50

nanoseconds

do echo $i; java

1
Scanning the

The value is:

Search took:
2
Scanning the

The value is:

Search took:

3
Scanning the

The value is:

Search took:

47
Scanning the

The value is:

Search took:
48
Scanning the

The value is:

Search took:
49
Scanning the

The value is:

Search took:
50

Scanning the

The value is:

Search took:

array of size: 1
1

4,116 nanoseconds

array of size: 2
2
4,286 nanoseconds

array of size: 3
3
4,600 nanoseconds

array of size: 47
512559680
9,140 nanoseconds

array of size: 48
-811192543
10,143 nanoseconds

array of size: 49
-298632863
9,212 nanoseconds

array of size: 50
-1109825406
9,662 nanoseconds

FastBuz $i; done

Growth of functions

2]
U
g
o

Elements
http://bigocheatsheet.com/

Growth of functions

Trying every
possible permutation

O(n!) | O2An)

|Horrible||Bad||Fair||Good | (Excellent|

/ O(n"2)

Trying every

possible subset

Processing every element in a square array,
Comparing every element to every other element

/

n"37

1 !

3-way
nested for
loop

Operations

O(”"’g/

Finding the nearest photo
from every other photo with a k-d tree

/

n"47?

Linear Search | o)

ﬂ?i

O(log n), O(1)

Finding an element in a balanced tree,
Simple arithmetic, simple comparison, array access ym/

Trying every subset

Enumerate every possible subset of N items:
« Encode each subset as a binary vector

0 =>notin subset

1 =>inthe subset

How many distinct subsets are there?

2" distinct subsets of N items

That doesn’t seem too bad, what's 2190

1,267,650,600,228,229,401,496,703,205,376

1.27 x 1030 s ‘

Hmm, what's 21000

1.07 x 1030

W

Find the largest subset of 15t year JHU students that <xxx>

Gfe/‘

s

_ A O O -~ -~ 0O o

—\OAOAOAO/\'@/./j/

N OO O A W N -~ O

:

Consider every ordering of students in a classroom with 30 students
L

W

Trying every permutation

Enumerate every possible permutation of N items:
« Encode each item as a character
« Try all possibilities
How many distinct permutations are there?
(N) X (N-1) x (N-2) x (N-3) x ... x 3 x2x 1

N! => n factorial

That doesn’t seem too bad, what's 100!
9.3 x 10%%7

Yikes, what’s 30!

2.6 x 1032 f&

MPK
MKP
PMK
PKM
KMP
KPM

Trying every permutation

public class Permute {
public static long numtries;

public static void swap(int [] keys, int x, int y) {
int temp = keys[x];
keys[x] = keys[y];
keys[y] = temp;

}
public static void permute(int [] keys, int 1, int r) {
int i;
if (1 == r) {
if ((numtries < 100) || (numtries % 100000 == 0)) {
System.out.print("try[" + numtries + "]:");

for (int x = 0; x < keys.length; xt++)
{ System.out.print(" " + keys[x]); }

System.out.println();

}

numtries++;

} else {

for (i = 1; 1 <= r; i++) {
swap(keys,1l, 1i);
permute(keys, 1+1, r);
swap(keys, 1, 1);

}

Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");

return;
}
int len = Integer.parselnt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+l; }

permute (keys, 0, len-1);
System.err.println("There are

+ numtries

+ " permutations of " + len + " items.");
}
}
$ java Permute 1 $ java Permute 3
try[0]: 1 try[0]: 1 2 3
There are 1 permutations of 1 items. try[1l]: 1 3 2
try[2]: 2 1 3
$ java Permute 2 try[3]: 2 3 1
try[0]: 1 2 try[4]: 3 2 1
~ try[l]: 2 1 try[5]: 3 1 2
There are 2 permutations of 2 items. There are 6 permutations of 3 items.

=

Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");

return;
}
int len = Integer.parselnt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+l; }

permute(keys, 0, len-1);
System.err.println("There are + numtries
+ " permutations of " + len + " items.");

$ for i in "seq 1 207 ;
do echo $i; java Permute $i > $i.log ; done
1
There are 1 permutations of 1 items.
2
There are 2 permutations of 2 items.
3
There are 6 permutations of 3 items.
4
There are 24 permutations of 4 items.
5
Jjéb There are 120 permutations of 5 items.

Growth of functions

2]
U
g
o

Elements
http://bigocheatsheet.com/

Data Structure

@ 2
:

tack

:

ueue
Singly-Linked List
Doubly-Linked List
Skip List

Hash Table

Binary Search Tree
Cartesian Tree
B-Tree

Red-Black Tree
Splay Tree

AVL Tree

KD Tree

Data Structure Complexities

Common Data Structure Operations

Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion
o) o] foe] @@ o] [oem] [ocn)]
) ecn) lec1) oc1)|) locm)| [oc1)] loc1)
@ B o w @ @
cn) ecn) @ @ (o] (o] [(o) 0cn)
o) BB B o] [S 6D
|8Clog(n)) | [8C1og(n))| [6ClogCn))| [8Clog(n)d| |oCm)| [ocm| om oCm) 0(n log(n))

v @ @ B v oo

|8ClogCn))| (8CLogCn))|[8C1ogCn)) | (8CLogCn))| |0Cn)| loCn)|

WA [BClogCn))] [8CTogn)) [6CTogtnyd] N/A [locm)] [0<_nl m

EE
s
-
A
.i
~
=
A

[8Clog(n)) | [8C1og(n))| [8C1og(n))| [8C1og(n)) | (0Clog(n))| |0ClogCn)) | [0C1og(n))| 0ClogCn))|
[8Clog(n)) | [8C1og(n))|[6Clog(n))| [8C1og(n)) | (0Clog(n))| |0ClogCn)) | [0C1og(n))||0ClogCn))|
N/A - [8Clog(n))|[eClog(n))| [8Clog(n))| N/A [0ClogCn))|[0CLog(n))||0C1ogCn))|

[8Clog(n)) | [8C1og(n))|[8Clog(n))| [8Clog(n)) | (0C1og(n))||0ClogCn)) | |0C1og(n))||0ClogCn))| 0Cn)
[8Clog(n))| [BClogCn))] (6C1og(n))| [8CLogCndd| [0¢m)| [ocmd] [ocm) 0(n)

http://bigocheatsheet.com/

Agenda

I. Review HW I
2. Introduce HW 2

3. Recap on complexity

4. Sorting

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

Ig(1,000,000) = 20

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
I 05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
I 05 09 13 15 26 28 33 (3858 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order

I 05 09 13 (15 26 28 33/(38)58 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

.Sorted Order
(15) 26 28 33((38)58 71 81 93 96 96 99

Why Sort!

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
* I’'m thinking of a number between | and 1,000,000
* How many hillo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

.Sorted Order
(15) 26 28 33((38)58 71 81 93 96 96 99

World’s worst sorting function

public static void permute_sort(int [] keys, int 1, int r) {
Boolean isSorted = checkSorted(keys);
while (!isSorted) {
permute list(keys);
isSorted = checkSorted(keys)

Systematically permuting the items will eventually sort them,
but will take forever for lists > 30 items

We need a better algorithm!

Sorting

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50,13,63,61, 19

[How do you do it?]

6,14,29,31,39,64,78,50, 13,63,61, 19
6,13,14,29,31,39,64,78,50,63,61, 19
6,13,14,19,29,31, 39, 64,78,50,63, 6
6,13,14,19,29,31, 39, 64,78,50,63, 6
6,13,14,19,29,31,39,64,78,50,63, 6
6,13,14,19,29,31, 39,50, 64,78,63, 6
6,13,14,19,29,31,39,50,61, 64,78, 63
6,13,14,19,29,31,39,50,61,63,64,78
6,13,14,19,29,31,39,50,61,63,64,78
6,13,14,19,29,31,39,50,61,63,64,78
6,13,14,19,29,31,39,50,61, 63, 64,78
6,13,14,19,29,31,39,50,61,63,64,78

Sorted elements

To be sorted

Sorting

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50, 13,63,61, 19

[How do you do it?]

, 14,29,31,39,64,78,50, 13,63,61, 19
, 14,29,31,39,64,78,50,63,61, 19
, 19,29,31,39,64,78,50,63, 61
,29,31,39,64,78,50,63,6l
,31,39,64,78,50,63,61

, 39,50, 64,78,63,6l
,50,61,64,78,63

,61,63,64,78

,63,64,78

, 64,78

, 78

To be sorted

Here we used your short-term memory to
“slide over” the “To be sorted” values to
make space for the next smallest

A computer would instead “flip” the next
smallest from the “To be sorted” sublist to
the end of the “Sorted” sublist

29, 14, 31,39,64,78,50, 13,63,61, 19
14,31, 39, 64,78, 50,29,63,61, 19
31,39,64,78,50,29,63,61, 19

39, 64,78,50,29,63,61, 31

64,78, 50,39,63,61, 31

78,50, 39,63, 61, 64

Selection Sort

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis

public static void selectionSort(int[] a) {
for (int 1 = 0; 1 < a.length - 1; i++) {
int min = 1i;
for (int j =1 + 1, j < a.length; j++) {
if (a[jl < a[min]) {

min = j;
}
}
int t = a[i]; a[i] = a[min]; a[min] = t;
}
}

Analysis Requires almost no
* Quterloop: i=0ton extra space: In-place
* Inner loop: j=iton algorithm

« Total Running time: Outer * Inner = O(n?)

" nn+1
TZWH%n—D+%n—%+~~+3+2+1:E:u:ijj.

1=1

= 0(n?)

Selection Sort Analysis

Problem 3: Analysis of Selection Sort (20%)

Your final task for this assignment is to analyze the following selection sort algorithm theoretically (without running it) in detail
(without using O-notation). Here's the code, and you must analyze exactly this code (the line numbers are given so you can refer to
them in your writeup for this problem):

public static void selectionSort(int[] a) {
for (int 1 = 0; 1 < a.length - 1; i++) {
int min = 1i;
for (int j =1+ 1; j < a.length; j++) {

B WN -

; if (a[j] < a[min]) {
} e The next homework will
} need a more careful

-) s 18 el el QI Gl | et analysis than previous

| } slide ©

You need to determine exactly how many comparisons C(n) and assignments A(n) are performed by this implementation of
selection sort in the worst case. Both of those should be polynomials of degree 2 since you know that the asymptotic complexity of
selection sort is O(nA2). (As usual we refer to the size of the problem, which is the length of the array to be sorted here, as “n”
above.)

Important: Don't just state the polynomials, your writeup has to explain howyou derived them! Anyone can google for the answer,
but you need to convince us that you actually did the work!

Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[14,29],6,31,39,64,78,50, 13,63,61,19 14,6,29,31,39,64,50,[78, 13],63,61, 19
[14,29],6,31,39,64,78,50, 13,63,61,19 14,6,29,31,39,64,50,[13,78],63,61, 19

14,[29,6], 31, 39,64,78,50,13,63,61, 19 14, 6,29,31,39,64,50, 13,[/8,63],61, 19
14, [6,29],31,39,64,78,50,13,63,61, 19 14, 6,29,31,39,64,50, 13,[63,/8],61, 19

14,6,[29,31],39,64,78,50,13,63,61, 19 14,6,29,31,39,64,50, 13,63,[/8,61], 19
14,6,[29,31],39,64,78,50,13,63,61, 19 14,6,29,31,39,64,50, 13,63,[61, /8], 19

14,6,29,[31,39],64,78,50, 13,63,61, 19
14,6,29,[31,39],64,78,50, 13,63,61, 19
14,6,29,31,[39,64],78,50, 13,63,61, 19
14,6,29,31,[39,64], 78,50, 13,63,61,19 14,6,29,31,39,64,50, 13,63,61, 19,
14,6,29,31,39,[64, 78], 50, 13, 63,61, 19
14,6,29,31,39,[64,78],50, 13, 63,61, 19

14,6,29,31,39,64,[/8,50],13,63,61, 19
14,6,29,31, 39,64,[50,/8],13,63,61, 19

14,6,29,31,39,64,50, 13,63,61,[/8, 19]
14, 6,29,31,39,64,50,13,63,61,[19, /8]

Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[14,6],29,31,39,64,50,13,63,6l, 19, 6,14,29,31,39,50, 13, [64, 63], 61, 19,
[6, 141,29, 31,39, 64, 50, 13, 63,61, 19, 6, 14,29,31,39,50, 13, [63,64], 61, 19,

6,[14,29],31,39, 64,50, 13,63,61, 19,
6,[14,29],31,39, 64,50, 13,63,61, 19,
6,14,[29,31],39, 64,50, 13,63,61, 19,
6,14,[29,31],39,64,50,13,63,61, 19, 6,14,29,31,39,50, 13,63,61,[64, 19],
6,14,29,[31,39],64,50, 13,63,61, 19, 6,14,29,31, 39,50, 13,63,61,[19,64],
6,14,29,[31,39], 64,50, 13,63,61, 19,

6,14,29,31,[39,64],50, 13,63,61, 19,
6,14,29,31,[39,64],50, 13,63,61, 19,

6,14,29,31,39,[64,50], 13,63,61, 19,
6, 14,29,31,39,[50,64], 13,63,61, 19,

6,14,29,31,39,50,[64, 13],63, 61, 19,
6,14,29,31,39,50,[13,64], 63,61, 19,

6,14,29,31,39,50, 13,63,[64,61], 19,
6,14,29,31,39,50,13,63,[61,64], 19,

6,14,29,31,39,50, 13,63,61, 19,

Bubble sort

Sort these values by bubbling up the next largest value
14,29,6,31,39,64,78,50, 13,63,61, 19

[6, 14],29,31,39,50,13,63,61, 19, How many passes will we need to do!?
6,[14,29],31,39,50,13,63,61, 19, O(n)
6,14,[29,31],39,50, 13,63,61, 19,

6,14,29,[31,39],50, 13,63,61, 19,

How much work does each pass take!?
6,14,29,31,[39,50],13,63,61, 19,

6, 14,29,31,39,[50, 13], 63,61, 19, Ofn)
6,14,29,31,39,[13,50],63,61, 19,

6,14,29,31,39, 13, [50’_ 161,19, What is the total amount of work?
6,14,29,31,39, 13,50,[63,61], 19, n passes, each requiring O(n) => O(n?)
6,14,29,31,39,13,50,[61,63], 19,

6,14,29,31,39,13,50,61,[63,19], Note, you might get lucky and finish
6,14,29,31,39,13,50,61,[19, 63], much sooner than this

6,14,29,31,39,13,50,61, 19,

Bubble sort

https://en.wikipedia.org/wiki/Bubble sort

Insertion Sort

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50, 13,63,61, 19

29,6,31,39,64,78,50,13,63,61,19 Base Case: Declare the first element as a
6,31,39,64,78,50,13,63,61,19 correctly sorted array

31,39,64,78,50,13,63,61,19 © Repeat: Iteratively add the next unsorted
39,64,78,50, 13,63,61, 19 element to the partially sorted array at the

64,78,50,13,63,61,19 g correct position
78,50, 13,63,61, 19 -g
50, 13,63,61,19 F

orte

Slide the unsorted element into the correct

position:
13,63,61,19
63,61, 19 6,31,39,64,78,50, 13,63,61, 19
61,19 31,39,64,78,50, 13,63,61, 19
19 31,39,64,78,50, 13,63,61, 19
Outer loop: n elements to move into correct position Total Work:

Inner loop: O(n) work to move element into correct position O(n?)

Insertion Sort

https://en.wikipedia.org/wiki/Insertion_sort

Quadratic Sorting Algorithms

Selection Sort Bubble Sort Insertion Sort
Move next smallest Swap up bigger Slide next value into
into position values over smaller correct position

Asymptotically all three have the same performance, but can differ
for different types of data. HW 3 will compare them in more detail

Next Steps

. Work on HW?2

2. Check on Piazza for tips & corrections!

