
CS 600.226: Data Structures
Michael Schatz

Sept 17 2018
Lecture 8. Sorting

Agenda
1. Review HW1

2. Introduce HW 2

3. Recap on complexity

4. Sorting

Assignment 1: Due Friday Sept 14 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment01/assignment01.md

GradeScope.com
Entry Code: MDJYER

Make sure to upload the README and ListADT.txt files too!

Agenda
1. Review HW1

2. Introduce HW 2

3. Recap on complexity

4. Sorting

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Assignment 2: Arrays of Doom!
Out on: September 14, 2018
Due by: September 21, 2018 before 10:00 pm
Collaboration: None
Grading:

Functionality 65%
ADT Solution 20%
Solution Design and README 5%
Style 10%

Overview
The second assignment is mostly about arrays, notably our own array
specifications and implementations, not just the built-in Java arrays. Of
course we also once again snuck a small ADT problem in there...

Note: The grading criteria now include 10% for programming style.
Make sure you use Checkstyle with the correct configuration file
from Github!

http://checkstyle.sf.net/
https://github.com/schatzlab/datastructures2018/tree/master/resources

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 1: Revenge of Unique (30%)
You wrote a small Java program called Unique for Assignment 1. The
program accepted any number of command line arguments (each of which
was supposed to be an integer) and printed each unique integer it
received back out once, eliminating duplicates in the process.

For this problem, you will implement a new version of Unique called
UniqueRevenge with two major changes:

• First, you are no longer allowed to use Java arrays (nor any other
advanced data structure), but you can use our Array interface and our
SimpleArray implementation from lecture (also available on github)

• Second, you're going to modify the program to read the integers from
standard input instead of processing the command line.

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 2: Flexible Arrays (20%)
Develop an algebraic specification for the abstract data type

FlexibleArray which works like the existing Array ADT for the most

part except that both its lower and its upper index bound are set when

the array is created. The lower as well as upper bound can be any integer,

provided the lower bound is less than or equal the upper bound.

Write up the specification for FlexibleArray in the format we used in lecture

and comment on the design decisions you had to make. Also, tell us what

kind of array you prefer and why.

Hints
• A FlexibleArray for which the lower bound equals the upper bound has

exactly one slot.

• Your FlexibleArray is not the Array ADT we did in lecture; it doesn't

have to support the exact same set of operations.

Assignment 2: Due Friday Sept 21 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment02/README.md

Problem 3: Sparse Arrays (35%)
A sparse array is an array in which relatively few positions have values
that differ from the initial value set when the array was created. For
sparse arrays, it is wasteful to store the value of all positions explicitly
since most of them never change and take the default value of the
array. Instead, we want to store positions that have actually been
changed.

For this problem, write a class SparseArray that implements the Array
interface we developed in lecture (the same interface you used for
Problem 1 above). Do not modify the Array interface in any
way! Instead of using a plain Java array like we did for SimpleArray,
your SparseArray should use a linked list of Node objects to store
values, similar to the ListArray from lecture (and available in github).
However, your nodes no longer store just the data at a certain position,
they also store the position itself!

https://github.com/schatzlab/datastructures2018/tree/master/lectures/05.Iterators

Introduction to Checkstyle
http://checkstyle.sourceforge.net/

$ java -jar datastructures2018/resources/checkstyle-8.12-all.jar \
-c datastructures2018/resources/cs226_checks.xml HelloWorld.java

Agenda
1. Review HW1

2. Introduce HW 2

3. Recap on complexity

4. Sorting

Complexity Analysis
How long will the algorithm take when run on inputs of different sizes:
• If it takes X seconds to process 1000 items, how long will it take to

process twice as many (2000 items) or ten times as many (10,000 items)?

Generally looking for an order of magnitude estimate:

Also very important for space characterization:
Sometimes doubling the number of elements will more than double the
amount of space needed

Constant time

Accessing 1st or
1 billionth entry
from an array
takes same

amount of time

Linear time

Takes 10 times longer
to scan a list that has

10 times as many
values

Quadradic time

Nested loops grows
with the square of the

list length

Big-O Notation
• Formally, algorithms that run in O(X) time means that the total

number of steps (comparisons and assignments) is a polynomial
whose largest term is X, aka asymptotic behavior
• f(x) ∈ O(g(x)) if there exists c > 0 (e.g., c = 1) and x0 (e.g., x0 = 5)

such that f(x) ≤ cg(x) whenever x ≥ x0
• T(n) = 33 => O(1)
• T(n) = 5n-2 => O(n)
• T(n) = 37n2 + 16n – 8 => O(n2)
• T(n) = 99n3 + 12n2 + 70000n + 2 => O(n3)
• T(n) = 127n log (n) + log(n) + 16 => O(n lg n)
• T(n) = 33 log (n) + 8 => O(lg n)
• T(n) = 900*2n + 12n2 + 33n + 54 => O(2n)

• Informally, you can read Big-O(X) as “On the order of X”
• O(1) => On the order of constant time
• O(n) => On the order of linear time
• O(n2) => On the order of quadratic time
• O(n3) => On the order of cubic time
• O(lg n) => On the order of logarithmic time
• O(n lg n) => On the order of n log n time

Growth of functions

A quadratic function isnt necessarily larger than a linear function for all
possible inputs, but eventually will be

That largest polynomial term defines the Big-O complexity

By x = 100, T=x2 is 10 times
greater than T=10x

Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

public static int fib(int n) {
if (n <= 1) {
return 1;

}

return buz(n-1) + buz(n-2);
}

Fibonacci Sequence

1 0

1 1 1 0 1 0 1 0

3 2 2 1

2 1 1 1 1 1 1 0

8

5 3

[How long would it take for F(7)?]
[What is the running time?]

public static int fib(int n) {
if (n <= 1) {
return 1;

}

return buz(n-1) + buz(n-2);
}

Bottom-up Fibonacci Sequence

1 2 3 4 50

1 1 2 3 50

6

8

[How long will it take for F(7)?]
[What is the running time?]

public static int fastbuz(int n) {
int [] s = new int[n+1];
s[0] = 1; s[1] = 1;

for (int i = 2; i <= n; i++) {
s[i] = s[i-1] + s[i-2];

}

return s[n];
}

Fib vs FastFib
$ for i in `seq 1 50`;
do echo $i; java FastBuz $i; done

1
Scanning the array of size: 1
The value is: 1
Search took: 4,116 nanoseconds
2
Scanning the array of size: 2
The value is: 2
Search took: 4,286 nanoseconds
3
Scanning the array of size: 3
The value is: 3
Search took: 4,600 nanoseconds
...
47
Scanning the array of size: 47
The value is: 512559680
Search took: 9,140 nanoseconds
48
Scanning the array of size: 48
The value is: -811192543
Search took: 10,143 nanoseconds
49
Scanning the array of size: 49
The value is: -298632863
Search took: 9,212 nanoseconds
50
Scanning the array of size: 50
The value is: -1109825406
Search took: 9,662 nanoseconds

$ for i in `seq 1 50`;
do echo $i; java Buz $i; done

1
Scanning the array of size: 1
The value is: 1
Search took: 3,515 nanoseconds
2
Scanning the array of size: 2
The value is: 2
Search took: 3,849 nanoseconds
3
Scanning the array of size: 3
The value is: 3
Search took: 4,034 nanoseconds
...
47
Scanning the array of size: 47
The value is: 512559680
Search took: 11,723,622,912 nanoseconds
48
Scanning the array of size: 48
The value is: -811192543
Search took: 19,283,637,425 nanoseconds
49
Scanning the array of size: 49
The value is: -298632863
Search took: 33,963,346,264 nanoseconds
50
Scanning the array of size: 50
The value is: -1109825406
Search took: 51,185,363,592 nanoseconds

http://bigocheatsheet.com/

Growth of functions

Growth of functions

http://bigocheatsheet.com/
Finding an element in a balanced tree,

Simple arithmetic, simple comparison, array access

Linear Search

Finding the nearest photo
from every other photo with a k-d tree

Processing every element in a square array,
Comparing every element to every other element

Trying every
possible subset

Trying every
possible permutation

n^3?

3-way
nested for

loop

n^4?

Trying every subset

M
ik

e

P
e
te

r

K
e
lly

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Enumerate every possible subset of N items:

• Encode each subset as a binary vector

• 0 => not in subset

• 1 => in the subset

How many distinct subsets are there?

0

1

2

3

4

5

6

7

2n distinct subsets of N items

That doesn’t seem too bad, what’s 2100

1,267,650,600,228,229,401,496,703,205,376

1.27 x 1030

Hmm, what’s 21000

1.07 x 10301

Find the largest subset of 1st year JHU students that <xxx>

Trying every permutation

Enumerate every possible permutation of N items:
• Encode each item as a character

• Try all possibilities

How many distinct permutations are there?

(N) x (N-1) x (N-2) x (N-3) x … x 3 x 2 x 1

That doesn’t seem too bad, what’s 100!

9.3 x 10157

MPK
MKP
PMK
PKM
KMP
KPM

N! => n factorial

Yikes, what’s 30!

2.6 x 1032

Consider every ordering of students in a classroom with 30 students

Trying every permutation
public class Permute {
public static long numtries;

public static void swap(int [] keys, int x, int y) {
int temp = keys[x];
keys[x] = keys[y];
keys[y] = temp;

}

public static void permute(int [] keys, int l, int r) {
int i;
if (l == r) {

if ((numtries < 100) || (numtries % 100000 == 0)) {
System.out.print("try[" + numtries + "]:");
for (int x = 0; x < keys.length; x++)

{ System.out.print(" " + keys[x]); }
System.out.println();

}
numtries++;

} else {
for (i = l; i <= r; i++) {
swap(keys,l, i);
permute(keys, l+1, r);
swap(keys, l, i);

}
}

}

Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");
return;

}

int len = Integer.parseInt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+1; }
permute(keys, 0, len-1);
System.err.println("There are " + numtries

+ " permutations of " + len + " items.");
}

}

$ java Permute 3
try[0]: 1 2 3
try[1]: 1 3 2
try[2]: 2 1 3
try[3]: 2 3 1
try[4]: 3 2 1
try[5]: 3 1 2
There are 6 permutations of 3 items.

$ java Permute 1
try[0]: 1
There are 1 permutations of 1 items.

$ java Permute 2
try[0]: 1 2
try[1]: 2 1
There are 2 permutations of 2 items.

Trying every permutation

public static void main(String [] args) {
if (args.length == 0) {
System.out.println("Permute num");
return;

}

int len = Integer.parseInt(args[0]);
int [] keys = new int[len];
for (int i = 0; i < len; i++) { keys[i] = i+1; }
permute(keys, 0, len-1);
System.err.println("There are " + numtries

+ " permutations of " + len + " items.");
}

}

$ for i in `seq 1 20`;
do echo $i; java Permute $i > $i.log ; done

1
There are 1 permutations of 1 items.
2
There are 2 permutations of 2 items.
3
There are 6 permutations of 3 items.
4
There are 24 permutations of 4 items.
5
There are 120 permutations of 5 items.

http://bigocheatsheet.com/

Growth of functions

Data Structure Complexities

http://bigocheatsheet.com/

Agenda
1. Review HW1

2. Introduce HW 2

3. Recap on complexity

4. Sorting

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

lg(1,000,000) = 20

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

Why Sort?

Sorting is very powerful to organize large amounts of data
Becomes a core routine in many data structures

When data are sorted you can do binary search!
• I’m thinking of a number between 1 and 1,000,000
• How many hi/lo guesses will it take to figure it out?

How many hi/lo guesses to find my special number?
26 05 38 28 93 81 71 15 96 33 99 13 58 96 09

Same Data, Sorted Order
05 09 13 15 26 28 33 38 58 71 81 93 96 96 99

World’s worst sorting function

public static void permute_sort(int [] keys, int l, int r) {
Boolean isSorted = checkSorted(keys);
while (!isSorted) {

permute_list(keys);
isSorted = checkSorted(keys)

}
}

Systematically permuting the items will eventually sort them,
but will take forever for lists > 30 items

We need a better algorithm!

Sorting
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

Sorted elements

To
 b

e
so

rte
d

Sorting
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

Sorted elements

To
 b

e
so

rte
d

Here we used your short-term memory to
“slide over” the “To be sorted” values to
make space for the next smallest

A computer would instead “flip” the next
smallest from the “To be sorted” sublist to
the end of the “Sorted” sublist

6, 29, 14, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 13, 14, 31, 39, 64, 78, 50, 29, 63, 61, 19
6, 13, 14, 31, 39, 64, 78, 50, 29, 63, 61, 19
6, 13, 14, 19, 39, 64, 78, 50, 29, 63, 61, 31
6, 13, 14, 19, 29, 64, 78, 50, 39, 63, 61, 31
6, 13, 14, 19, 29, 31, 78, 50, 39, 63, 61, 64

Selection Sort

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis

Analysis
• Outer loop: i = 0 to n
• Inner loop: j = i to n
• Total Running time: Outer * Inner = O(n2)

T = n+ (n� 1) + (n� 2) + · · ·+ 3 + 2 + 1 =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Requires almost no
extra space: In-place
algorithm

Selection Sort Analysis

The next homework will
need a more careful
analysis than previous
slide J

Bubble sort
Sort these values by bubbling up the next largest value

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[14, 29], 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
[14, 29], 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

14, [29, 6], 31, 39, 64, 78, 50, 13, 63, 61, 19
14, [6, 29], 31, 39, 64, 78, 50, 13, 63, 61, 19

14, 6, [29, 31], 39, 64, 78, 50, 13, 63, 61, 19
14, 6, [29, 31], 39, 64, 78, 50, 13, 63, 61, 19

14, 6, 29, [31, 39], 64, 78, 50, 13, 63, 61, 19
14, 6, 29, [31, 39], 64, 78, 50, 13, 63, 61, 19

14, 6, 29, 31, [39, 64], 78, 50, 13, 63, 61, 19
14, 6, 29, 31, [39, 64], 78, 50, 13, 63, 61, 19

14, 6, 29, 31, 39, [64, 78], 50, 13, 63, 61, 19
14, 6, 29, 31, 39, [64, 78], 50, 13, 63, 61, 19

14, 6, 29, 31, 39, 64, [78, 50], 13, 63, 61, 19
14, 6, 29, 31, 39, 64, [50, 78], 13, 63, 61, 19

14, 6, 29, 31, 39, 64, 50, [78, 13], 63, 61, 19
14, 6, 29, 31, 39, 64, 50, [13, 78], 63, 61, 19

14, 6, 29, 31, 39, 64, 50, 13, [78, 63], 61, 19
14, 6, 29, 31, 39, 64, 50, 13, [63, 78], 61, 19

14, 6, 29, 31, 39, 64, 50, 13, 63, [78, 61], 19
14, 6, 29, 31, 39, 64, 50, 13, 63, [61, 78], 19

14, 6, 29, 31, 39, 64, 50, 13, 63, 61, [78, 19]
14, 6, 29, 31, 39, 64, 50, 13, 63, 61, [19, 78]

14, 6, 29, 31, 39, 64, 50, 13, 63, 61, 19, 78

On the first pass, sweep list
to bubble up the largest element

Bubble sort
Sort these values by bubbling up the next largest value

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[14, 6], 29, 31, 39, 64, 50, 13, 63, 61, 19, 78
[6, 14], 29, 31, 39, 64, 50, 13, 63, 61, 19, 78

6, [14, 29], 31, 39, 64, 50, 13, 63, 61, 19, 78
6, [14, 29], 31, 39, 64, 50, 13, 63, 61, 19, 78

6, 14, [29, 31], 39, 64, 50, 13, 63, 61, 19, 78
6, 14, [29, 31], 39, 64, 50, 13, 63, 61, 19, 78

6, 14, 29, [31, 39], 64, 50, 13, 63, 61, 19, 78
6, 14, 29, [31, 39], 64, 50, 13, 63, 61, 19, 78

6, 14, 29, 31, [39, 64], 50, 13, 63, 61, 19, 78
6, 14, 29, 31, [39, 64], 50, 13, 63, 61, 19, 78

6, 14, 29, 31, 39, [64, 50], 13, 63, 61, 19, 78
6, 14, 29, 31, 39, [50, 64], 13, 63, 61, 19, 78

6, 14, 29, 31, 39, 50, [64, 13], 63, 61, 19, 78
6, 14, 29, 31, 39, 50, [13, 64], 63, 61, 19, 78

6, 14, 29, 31, 39, 50, 13, [64, 63], 61, 19, 78
6, 14, 29, 31, 39, 50, 13, [63, 64], 61, 19, 78

6, 14, 29, 31, 39, 50, 13, 63, [64, 61], 19, 78
6, 14, 29, 31, 39, 50, 13, 63, [61, 64], 19, 78

6, 14, 29, 31, 39, 50, 13, 63, 61, [64, 19], 78
6, 14, 29, 31, 39, 50, 13, 63, 61, [19, 64], 78

6, 14, 29, 31, 39, 50, 13, 63, 61, 19, 64, 78

On the second pass, sweep list
to bubble up the second largest element

Bubble sort
Sort these values by bubbling up the next largest value

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[6, 14], 29, 31, 39, 50, 13, 63, 61, 19, 64, 78
6, [14, 29], 31, 39, 50, 13, 63, 61, 19, 64, 78
6, 14, [29, 31], 39, 50, 13, 63, 61, 19, 64, 78
6, 14, 29, [31, 39], 50, 13, 63, 61, 19, 64, 78
6, 14, 29, 31, [39, 50], 13, 63, 61, 19, 64, 78
6, 14, 29, 31, 39, [50, 13], 63, 61, 19, 64, 78
6, 14, 29, 31, 39, [13, 50], 63, 61, 19, 64, 78
6, 14, 29, 31, 39, 13, [50, 63], 61, 19, 64, 78
6, 14, 29, 31, 39, 13, 50, [63, 61], 19, 64, 78
6, 14, 29, 31, 39, 13, 50, [61, 63], 19, 64, 78
6, 14, 29, 31, 39, 13, 50, 61, [63, 19], 64, 78
6, 14, 29, 31, 39, 13, 50, 61, [19, 63], 64, 78

6, 14, 29, 31, 39, 13, 50, 61, 19, 63, 64, 78

On the third pass, sweep list
to bubble up the third largest element

How many passes will we need to do?

How much work does each pass take?

What is the total amount of work?

O(n)

O(n)

n passes, each requiring O(n) => O(n2)

Note, you might get lucky and finish
much sooner than this

Bubble sort

https://en.wikipedia.org/wiki/Bubble_sort

Insertion Sort
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 50, 64, 78, 13, 63, 61, 19
6, 13, 14, 29, 31, 39, 50, 64, 78, 63, 61, 19
6, 13, 14, 29, 31, 39, 50, 63, 64, 78, 61, 19
6, 13, 14, 29, 31, 39, 50, 61, 63, 64, 78, 19
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

Sorted elements

To
 b

e
so

rte
d

Base Case: Declare the first element as a
correctly sorted array

Repeat: Iteratively add the next unsorted
element to the partially sorted array at the
correct position

Outer loop: n elements to move into correct position
Inner loop: O(n) work to move element into correct position

Total Work:
O(n2)

Slide the unsorted element into the correct
position:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
14, 6, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19
6, 14, 29, 31, 39, 64, 78, 50, 13, 63, 61, 19

Insertion Sort

https://en.wikipedia.org/wiki/Insertion_sort

Quadratic Sorting Algorithms

Insertion Sort
Slide next value into

correct position

Bubble Sort
Swap up bigger

values over smaller

Selection Sort
Move next smallest

into position

Asymptotically all three have the same performance, but can differ
for different types of data. HW 3 will compare them in more detail

Next Steps

1. Work on HW2

2. Check on Piazza for tips & corrections!

