CS 600.226: Data Structures
Michael Schatz

Sept 5,2018
Lecture 3: Introduction to Interfaces

Agenda

I. Quick Review

2. Introduction to Java Interfaces

3. Introduction to Generics, Exceptions and Arrays

Welcome!

Course Webpage:
Course Discussions:

Office Hours: Wednesday @ 2:45pm — 4pm, Malone 323
CA office hours throughout the week ©

Programming Language: Java with Checkstyle and |Unit
Virtual Machine (Lubuntu) or CS acct.

Accounts for Majors (CS/ICE) & Minors:

If you do not already have a personal CS departmental unix account, please
complete an account request form ASAP. Check "Linux Undergrad" for
account type. (Note - must be declared to be eligible.)

Accounts for Others:
We will need to make accounts. Do people need them?

CS Lab access:

Students must see Steve DiBlasio, with your J-card, in Malone G6IA to get
CS Lab access.The CS Lab is Malone 122 and that's where course TA/CAs

I will be available for help.

https://github.com/schatzlab/datastructures2018
https://piazza.com/jhu/fall2018/600226/home

Piazza! Lecture Notes! Q&A!

® 0 ® /P (1] Dataswuctures Course Assis: x | [600226 * ([PotorloctweNotes.pdt X | G Dr. Poter Froniich - Google S X Michasl
¢« C () @& Secure | hips//plazza.com/class/|l345xehddw3wa?cid=9 @ 0089 =0 ¢
MO Brumel 2o0sy I Y O DL QO & W © © Baesh Bajhu BiMedia Bishop [) edt [) AmCookies [) Remove NYT Cooki. ¥ [2) Other Bookmarks

pPlazza 600226~ QB&A Resowrces Sumtistics Manage Class

Bl twl w2 w3 hwd S legiitks
< | Unread Updated Unresolved Following -
- - &
Q Search or add a post m
+ PINNED < Lecture notes
U et Office Hours V18 Here are the lecture notes from previous versions of this class taught by Dr. Peter Froehlich. We wont be following this exactly as presented,
This thread can be used for office hour 8 but this can be a very useful rescurce with acditional exampies and discussion of the topics we Jo cover in class. These ame provided as-is,
wpdates, 50 It might be worthwhile 1o check although if you spot any typos ket me know and | can forward on 10 Peter.

here if you plan on coming to office

¥ st Resources & Links a31/18 PeterLoctureNotes. pof
Mere is a list of several helpful links for the 8
<lass 10 you can get to them easlly from Good luck!

plazza. You can also aways go

« FAVORITES * Mo
W nstr Welcome to Plazzal a2on1s
Students Welcome to Mazzal Well be i logistics

conducting all dass-related dscussion here
this term. The quicker you begn a

= K n pood note O Updated Just now by Michael Schatr
W str Lecture notes 2.40PM
Here are the lecture notes from previcus 8
versions of this class taught by Dr. Peter followup discussions for ingening questions and comments

Froehlich, We wont be following this

¥ st Pre-Req Bootcamp Thursda.... 1214PM Start a new followup discussion
Hi Cuys, So | got Malone 228 reserved for us -
for this Tharsday, 9/6, from 5:30-6:30. mMpose & new followup RSO0
run throwgh a powerpoint
~ LAST WEEK -
Average Respomse Time Special Mentions. Online Now | This Week
W Private PPT From Yesterday? ~ -

Sat
Happy Labor Day Weekend! | wanted 10 male o N/A Them am no special mentions at this Bme, 81119
sure | set wp my Virtsal Box Linux

- | "I||| I " " Ii" Ii |" Copyrght © 2010 Pacaas Sachnologes, nc. Al Rghts Fesersd. Prwacy Polcy Copyright Policy Terms of Use Biog Feport Dug!

VirtualBox

ORACLE
VM

VirtualBox

» Client application available for Mac, Windows, Linux

() eBusiness

7T windows 8 Enterprise (RTM)
K183 D Running

5 Oracle Linux 6 U3
< Running

™ | Windows XP_1
Xj < Running
) Mobile Platforms

\ Android Jelly-bean
% @ Powered Off

\ Chrome OS
<t @ Powered Off

) Windows

1 Windows 7 (x64)
K174 @ Powered OFf

| Windows XP OBI
XP5 @ Powered Off

EIF| windows 7
K75 (& Saved

ETF windows Server 2012
8] @ Powered Off

STy Window 8 Server
81 [H Saved

v Unux

2 | Ubuntu
| @ Powered OFf

L fedora 17
EE I Saved

* General
Name Windows 8 Enterprise (RTM)

(&l system

Base Memory: 2048 MB
Boot Order. Floppy, CO/DVD-ROM, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging

* General

Name Oracle Linux 6 U3
Operating System: Oracle (64 bit)
Groups 8

&l system

Base Memory: 1024 MB
Boot Order Floppy, CO/DVD-ROM, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX

= General

Name Windows XP_1
Operating System
Groups

&l System

Base Memory: 512 M8
Boot Order Floppy, CD/DVD-ROM, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging

» Available to run our reference virtual machine running linux

« Guaranteed that your development environment matches testing environment

 Make sure to install the Extension Pack and Guest Additions too

VirtualBox Shared Folders

¢s226 - Shared Folders

@ H e G e D e [

General System Display Storage Audio Network Ports Shared Folders User Interface

II\

N\ III

Shared Folders . -

o " Folder Path: |01 8/DataStructures/vmstufﬂ | I
Name Path \uto-mount Access @
¥ Machine Folders Folder Name: vmstuff -

vmstuff /Users fes Full &l
Transient Folders Read-only
Auto-mount i

Make Permanent

cancel (D

Cancel OK

VirtualBox Shared Folders

o0 e vmstuff

Activities [Terminal ~ Tue 20:06

Favorites

L) Recents

v A Java
€s226@cs226-VirtualBox: /media/sf PR aRrs Ll ekt

-

le Edit View Search Terminal Help £ Desktop

cs226@cs226-VirtualBox: ‘@‘ AirDrop
S cat > hello.txt

>
hello, world < Dropbox
cs226@cs226-VirtualBox (2} mschatz
S cat hello.txt

Devices

hello, world
cs226@cs226-VirtualBox:] O Remote Disc
s

hello, world

TS Poe 0 &

S sudo usermod -aG vboxsf cs226
S /sbin/shutdown -r now

Java Environments

Command Line
Everything

$ vim HelloWorld.java

$ javac HelloWorld.java
$ java HelloWorld

Universal, fast, flexible
Steep learning curve

GUI Editor
+ Command Line

Sublime Text

$ javac HelloWorld.java
$ java HelloWorld

Nearly universal, flexible
Moderate learning curve

Integrated Development
Environment (IDE)

. 9-0-Q #G &5 7 P

Eclipse / IntelliJ

Most Support
Most “magical”

Code may not work
during grading ®

Bootcamp:Thursday @ 5:30 Malone 228

® 0@ | p 1 nbox 1) - mchael.schatz@g X | & Google News x /' [3 s00226 x \ @ ” - | Mehael
& C () @ Secure | https://plazza.com/class/|345xehddw3wa?cid=12 @ SN G - =0 ¢
M Bmumvel 2oeily I Kl Y O DOSLOE &l o © Bcsh Bajw EMedia Eshop [) edt () RmCookies [) Remove NYT Cooki.. 331) Other Bookmarks |

pPlazza 600226 Q&A Resources Statistics Manage Class nunr..rsﬂ‘..,

i Gl twl w2 w3 hwd S logistis '

| 4| Unread Updated Unresolved Following O~ Note History

Q Search or add a post ’ note !
| ~ PIED «
et Ofce Hours v Pre-Req Bootcamp Thursday 9/6
This thread can be used for office hour wpdates, E Hi Guys,

0 It might be worthwhile 1o check here If you
plan on coming to offce

So | got Malone 228 reserved for us for this Thursday, V6, from 5:30-6:30. 'l run through 8 powerpoint with some general notes for developing in

W inatr M:lmll.hk’l : "‘“"g this course, as well as a quick Java refresher - covering most of the questions | remember having when | took this course. But, if you have
Mere is 2 list of several helpful links for the class .mm °.M want ISCUSS. m w m sand m fw
30 yOu can get 1o them easlly from plazza. You eyou od » fool ® up P the o e .
can also always go
« FAVORITES * o S

W nstr Welcome to Plazzal 82018 | .Tim
Students Welcome 1o Mazzal Well be E
conducting all dass-related discussion here this
term. The quicker you begin a logistics

| « TODAY
¥ istr Pre-Req Bootcamp Thursda... 12:14PM n good note | 0 Updated 2 hours ago by Tim Kuscher
Hi Guys, So | got Malone 228 reserved for us for g

this Thursday, 9/6, from $:30-6:30. 'l run
through a powerpoint |

| » LAST WEEK

|
W Private PPT From Yesterday? Sat o —
Happy Labor Day Weekend! | wanted 50 make u .
sure | sat up my Virtual Box Unux environment Anonymous 2 hous ago Could you email the PowerPoint out, for those of us that won't be able to attend?
correctly by going through the
Pre-Req Bootcamp F
:m.:r.z The below has been confirmed! = 2] Er 17 Tim Kutcher 2 rous sgo Yep! I'l have the final version posted in the class repository (and maybe add some notes
UPDATE: This Is tentatively planned for for any questions asked afterward) for you all 10 retrieve 1.

Thursday 9/6, 5:30-6:30 in Malone 2

|« WEEK A% - 825
)

Weicome to Plazzal B2078 1 grart & new followup discussion
Pazza is 2 QAA platform designed 10 get you a

great arswers from classmates and Instrucions
fast. We've put together thi

Agenda

I. Quick Review

2. Introduction to Java Interfaces

3. Introduction to Generics, Exceptions and Arrays

Interfaces

Introduction to Java Interfaces

Objects define their interaction with the outside world through the
methods that they expose. Methods form the object's interface with the
outside world; the buttons on the front of your television set, for example,
are the interface between you and the electrical wiring on the other side of
its plastic casing.You press the "power" button to turn the television on and
off. [...] An interface is a group of related methods with empty bodies.

https://docs.oracle.comljavaseltutorialljavalconceptslinterface.html

i l')“ interface Counter {
‘ int value();
void up();
H

void down();

}

Interfaces Review

Interfaces establish the “contract” between the implementation
and any potential client code

Helps to abstract our the key features of a data structure

You can trivially replace the use of one implementation with another as
long as they implement the same interface

Teams can work on different pieces of a large system knowing that
everything will work together in the end

Java Interfaces are groups of related methods with empty
bodies

Defines the syntax of what is available

interface Counter {
int value(); Whats wrong with this interface?
void up();
void down();

}

Interfaces Review

Interfaces establish the “contract” between the implementation
and any potential client code

Helps to abstract our the key features of a data structure

You can trivially replace the use of one implementation with another as
long as they implement the same interface

Teams can work on different pieces of a large system knowing that
everything will work together in the end

Java Interfaces are groups of related methods with empty
bodies

Defines the syntax of what is available

interface Counter {

int banana(); Whats wrong with this interface?
void orange();

void grape();

}

Algebraic Specification of Abstract Data Types

Counter ADT Specification.

adt Counter
uses Integer
defines Counter

H* H H

operations #
new: ---> Counter
up: Counter ---> Counter
down: Counter ---> Counter
value: Counter ---> Integer

axioms #

value(new()) >= 0
value(up(c)) > value(c)
value(down(c)) <= value(c)

name of specification
specification(s) this one needs (imports)
type(s) defined by this specification

operations(s) defined in this specification
constructor, "convert" TO Counter

mutators, make Counters from Counters

(in Java they'd change their receiver!)

observer, "convert" FROM Counter

axioms for the operations defined above

value of a new Counter is >= 0

value of up'd Counter is > value before

value of down'd Counter is <= value before

Axioms should be read as universally quantified. For example, the

second axiom is "for all counters c, the value of up(c) is > the value
of ¢" if read out aloud.The "rule of thumb" for finding axioms is to
combine all constructors/mutators with all observers and then
stare at that until we figure it out. :-)

Axioms are enforced by asserts and other test cases!

Variables and Types (1)

adt Counter
uses Integer interface Counter {
defines Counter int value();
void up();

operations void down();

new: ---> Counter }

up: Counter ---> Counter

down: Counter ---> Counter

value: Counter ---> Integer

axioms
value(new()) >= 0
value(up(c)) > value(c)
value(down(c)) <= value(c)

Does this specification allow for floating point numbers?
How would you fix it?

Variables and Types (2)

adt Counter
uses Float interface Counter {
defines Counter float value();
void up();

operations void down();

new: ---> Counter }

up: Counter ---> Counter

down: Counter ---> Counter

value: Counter ---> Float

axioms
value(new()) >= 0.0
value(up(c)) > value(c)
value(down(c)) <= value(c)

What if you want to allow the counter to use either floats or ints?
How would you code it?

Variable Types

adt Variable “Any” defines a type with = operation
uses Any T stands for “Any” type: int, float, String, ...
SRRELHCE VEIEIAIIOSINg LI v and t are values of type T
operations
new: T ---> Variable<T>
get: Variable<T> ---> T
set: Variable<T> x T ---> Variable<T>
axioms
get(new(t)) = t
get(set(v, t)) =t
adt Counter Using t with new() enables
uses Any more flexibility than initializing
defines Counter<T: Any> s
operations to 0, 3.14 or any other specific
new: T ---> Counter<T> value
up: Counter<T> ---> Counter<T>
down: Counter<T> ---> Counter<T> T must define >, <=, and =
value: Counter<T> —--> T new() takes a starting value t
axioms
value(new(t)) = t

value(up(c)) > value(c)

. value(down(c)) <= value(c)

Java Generics

In a nutshell, generics enable types (classes and interfaces) to be parameters when
defining classes, interfaces and methods. Much like the more familiar formal
parameters used in method declarations, type parameters provide a way for you to re-
use the same code with different inputs.

« Stronger type checks at compile time.
A Java compiler applies strong type checking to generic code and issues errors if
the code violates type safety. Fixing compile-time errors is easier than fixing runtime
errors, which can be difficult to find.

» Elimination of casts.
The following code snippet without generics requires casting:

List list = new ArrayList();
list.add("hello") ;
String s = (String) list.get (0);

When re-written to use generics, the code does not require casting:

List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

« Enabling programmers to implement generic algorithms.
By using generics, programmers can implement generic algorithms that work on
collections of different types, can be customized, and are type safe and easier to
read.

https://docs.oracle.com/javase/tutorial/java/generics/why.html

Implementing Variable Types with Generics

Variable. java

public interface Variable <T> {
public T get();
public void set(T t);

}

SimpleVariable. java

public class SimpleVariable<T> implements Variable<T> {
private T value;
public SimpleVariable(T t) {
this.value = t;

) blic T get() 1 At compile time it will
return this.value; automagically define
} set(String) and set(Integer)

public void set(T t) {
this.value = t;

}

public static void main (String[] args)({
SimpleVariable si = new SimpleVariable("Mike");
System.out.println("val: " + si.get() +

" type: + si.get().getClass().getName());

si.set(1234);
System.out.println("val: " + si.get() +
" type: + si.get().getClass().getName());

Implementing Variable Types with Generics

Activities) Terminal ~ Tue 15:57

— Cs226(@cs226-VirtualBox: ~/Documents/fcs226/datastructures2018/lectures/03.ArraysGenericsExceptions

File Edit View Search Terminal Help

-

Ne)
c5226@cs226-VirtualBox:
Simplevariable. java

cat
ic class Simplevariable<T> implements Variable<T> {

$
'publ
tes private T value;

public Simplevariable(T t) {
this.value = t;

)

. public T get() {
return this.value;
1
o

cs? public vold set(T t) {
this.value -

public static void main (String[] args){
Simplevariable si = new Simplevariable("Mike");
System.out.println("val: + si.get() + " type: + sl.get().getClass().getName());
si.set(1234);
System.out.printin(“val: + sl.get() + " type: + sl.get().getClass().getName());

}
J

}
Cs226@8cs226-VirtualBox: ;
$ javac variable.java Simplevariable. java
Note: Simplevariable. java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
Ccs226@cs226-VirtualBox: t ¢ 1t : !
$ java Simplevariable
val: Mike type: java.lang.String
val: 1234 type: java.lang.Integer

$226@cs226-VirtualBox: f

s i

aANJP 8Lt

Implementing Variable Types with Generics

SimpleVariable. java

" public static void main (String[] args){
SimpleVariable si = new SimpleVariable("Mike");
System.out.println("val: " + si.get() +
" type: " + si.get().getClass().getName());

SimpleVariable<String> ssi = si; - .
String vals = ssi.get(): Defining the variable type

System.out.println(vals); as SimpleVariable<String>

allows us to skip the cast!
si.set(1234);
System.out.println("val: " + si.get() +

" type: " + si.get().getClass().getName());

SimpleVariable<Integer> isi = si;
System.out.println(isi.get() + 10);
}

Interfaces Review

Interfaces establish the “contract” between the implementation
and any potential client code

Helps to abstract our the key features of a data structure

You can trivially replace the use of one implementation with another as
long as they implement the same interface

Teams can work on different pieces of a large system knowing that
everything will work together in the end

Java Interfaces are groups of related methods with empty
bodies
Defines the syntax of what is available

interface Counter { » Use an algebraic specification

int value(); to define the semantics
void up();

void down(); « Use genetics to allow flexibility

! across types

Agenda

I. Quick Review

2. Introduction to Java Interfaces

3. Introduction to Generics, Exceptions and Arrays

Our first data structure: Arrays
0 1 2 n-3 n-2 n-1
a:| t |t |t t |t | t
;<\A
S 3
g <

* Fixed length data structure

« Constant time get() and put() methods
« Definitely needs to be generic ©

:

Array ADT

adt Array
uses Any, Integer
defines Array<T: Any>

Uses two related ADTs

Defines method signatures

operations
new: Integer X T ---> Array<T>
get: Array<T> xXx Integer ---> T
put: Array<T> x Integer X T ---> Array<T>
length: Array<T> ---> Integer
axioms
e mein,), £) = & Enforced by asserts
get(put(a, i, t), j) = (if 1 = jJ then t else get(a, j))

length(new(n, t)) = n
length(put(a, i, t)) = length(a)

preconditions
new(n, t): 0 < n
get(a, i): 0 <= i < length(a)
put(a, i, t): 0 <= i < length(a)

Enforced by exceptions

=

Array Interface

J**
Arrays with integer positions.

The constructor should take a length >

0 as well as a default
value to "plaster" all over the new array. The constructor should
throw LengthException if length ≤ 0.

Array(int length, T default) throws LengthException

@param <T> Element type.
*/

public interface Array<T> {
[**

Change value at index.

@param i Index to write value at.
@param t Value to write at index.
@throws IndexException if i <

3/

void put(int i, T t) throws IndexException;

0 or i > length-1.

Array Interface

J**
Value at index.
@param i Index to read value at.
@return Value read at index.
@throws IndexException if i < 0 or i > length-1.
*/
T get(int i) throws IndexException;
J**
Length of array.
@return Length of array, always > O.
*/

int length();

Array Exceptions

IndexException. java

/[**
Exception for invalid index.
Data structures using (integer) indices throw IndexException
if a given index is out of range.

* /

public class IndexException extends RuntimeException {
private static final long serialVersionUID = O0L;

}

LengthException. java

[**

Exception for invalid length.

Data structures that have a fixed (integer) length throw
LengthException if a given length is out of range.

* /
public class LengthException extends RuntimeException {
private static final long serialVersionUID = 0L;

}

The type is the main item of interest, but other information could be returned

Simple Array |

SimpleArray.Java

/**

Array implementation on top of basic Java array.

The obvious implementation of the Array interface, absolutely positively
nothing fancy going on here.

There are two reasons for this class to exist: First it's an example for
the style of code we're about to write a lot of. Second it's useful
because Java's generics don't really play well with Java's basic arrays;
we'll use SimpleArray in lots of places where Java's arrays would give us
generic grief.

@param <T> Element type.

* /

public class SimpleArray<T> implements Array<T> {
// The underlying data structure of our abstract Array. VVhy'boﬂﬂer?
private T[] data;

/**

Constructs a new SimpleArray.

@param n Length of array, must be n > O.
@param t Default value to store in each slot.
@throws LengthException if n ≤ 0.

* /

public SimpleArray(int n, T t) throws LengthException {

T Simple Array 2

public SimpleArray(int n, T t) throws LengthException {
if (n <= 0) {
throw new LengthException();

}

// This cast works around Java's problems with generic arrays.
// The resulting warning is acceptable because there simply is
// no better way of doing this.
this.data = (T[]) new Object[n]; Workaround for java syntax
| // Array slots are null by default.

if (t == null) {

return;

}

for (int i = 0; i < n; i++) {
this.data[i] = t;

}

T Simple Array 3

// 1f we let ArrayIndexOutOfBoundsException propagate, we leak an
// implementation detail we should probably hide. (Also that name
// is so horrible, it deserves to live in a dark cave in Mordor.)

@Override
public T get(int i) throws IndexException {
try {
return this.data[i];
} catch (ArrayIndexOutOfBoundsException e) {

throw new IndexException(); These let us “hide” the
) : exceptions from our
B underlying datatypes
@Override
public void put(int i, T t) throws IndexException {
try {
this.data[i] = t;
} catch (ArrayIndexOutOfBoundsException e) {
throw new IndexException();
}
}
@Override
public int length() {
return this.data.length;
}

L

T Simple Array 4

public static void main(String [] args) throws
IndexException, LengthException {
Array<String> a = new SimpleArray<String>(4, "226");
assert a.length() == 4;
for (int i =0; i <a.length(); i++){
assert a.get(i).equals("226");

}

a.put(2, "Peter");

assert a.length() == 4;

assert a.get(2).equals ("Peter");

assert a.get(0).equals ("226");
| assert a.get(l).equals ("226");

assert a.get(3).equals ("226");

System.out.println("Passed the value assertions");

T Simple Array 5

try {
a.put(a.length(), "Paul");

System.out.println("Didnt get the exception");
}

catch (IndexException e)

{

System.out.println("Caught IndexException (as expected)");

}

try {
| Array<String> b = new SimpleArray<String>(0, "Mike");
System.out.println("No exception after creating second array");

}
catch (LengthException e)
{
System.out.println("Caught LengthException (as expected)");
}

Running with Assertions

Activities [Terminal ~ Tue 20:22

e

cs226@cs226-VirtualBox: ~/Documents/cs226/datastructures2018/lectures/03.ArraysGenericsExceptions

File Edit View Search Terminal Help
€s226@cs226-VirtualBox: ‘
S grep -n assert SimpleArray.java
a.length() == 40;
a.get(i).equals("226");
.length() == 4;
a.get(2).equals ("Peter”™);
.get(0).equals ("226");
.get(1).equals ("226");
a.get(3).equals ("226");
System.out.printin("Passed the value
cs226@cs226-VirtualBox: ¢
S java SimpleArray
Passed the value assertions
Caught IndexException (as expected)
Caught LengthException (as cxchtLd)
cs226@cs226-VirtualBox:
S java -ea SimpleArray
Exception in thread "main" java.lang.AssertionError
at SimpleArray. ra\n(,lmpleurray java: fb)
cs226@cs226-VirtualBox: ‘
S
cs226@cs226-VirtualBox:

S

©mn s

A

>

TR 9

o RSO EdE DS S Left R

$ java -ea SimpleArray

Next Steps

|. Reflect on the magic and power of interfaces, generics, and exceptions ©
2. Check on Piazza
3. Download class virtual machine, get CS account and/or set up Linux!

4. Get comfortable with a editor (VI rules!) and/or an IDE (Eclipse for Java)

5. Get comfortable with checkstyle

Welcome to CS 600.226

Questions!

https://github.com/schatzlab/datastructures2018

