
CS 600.226: Data Structures
Michael Schatz

Sept 5, 2018
Lecture 3: Introduction to Interfaces

Agenda
1. Quick Review

2. Introduction to Java Interfaces

3. Introduction to Generics, Exceptions and Arrays

Welcome!
Course Webpage: https://github.com/schatzlab/datastructures2018
Course Discussions: https://piazza.com/jhu/fall2018/600226/home

Office Hours: Wednesday @ 2:45pm – 4pm, Malone 323
CA office hours throughout the week J

Programming Language: Java with Checkstyle and JUnit
Virtual Machine (Lubuntu) or CS acct.

Accounts for Majors (CS/CE) & Minors:
If you do not already have a personal CS departmental unix account, please
complete an account request form ASAP. Check "Linux Undergrad" for
account type. (Note - must be declared to be eligible.)

Accounts for Others:
We will need to make accounts. Do people need them?

CS Lab access:
Students must see Steve DiBlasio, with your J-card, in Malone G61A to get
CS Lab access. The CS Lab is Malone 122 and that's where course TA/CAs
will be available for help.

https://github.com/schatzlab/datastructures2018
https://piazza.com/jhu/fall2018/600226/home

Piazza! Lecture Notes! Q&A!

VirtualBox

• Client application available for Mac, Windows, Linux
• Available to run our reference virtual machine running linux

• Guaranteed that your development environment matches testing environment
• Make sure to install the Extension Pack and Guest Additions too

VirtualBox Shared Folders

VirtualBox Shared Folders

$ sudo usermod -aG vboxsf cs226
$ /sbin/shutdown -r now

Java Environments

Command Line
Everything

$ vim HelloWorld.java

$ javac HelloWorld.java
$ java HelloWorld

Universal, fast, flexible
Steep learning curve

GUI Editor
+ Command Line

Sublime Text

$ javac HelloWorld.java
$ java HelloWorld

Nearly universal, flexible
Moderate learning curve

Integrated Development
Environment (IDE)

Eclipse / IntelliJ

Most Support
Most “magical”

Code may not work
during grading L

Bootcamp: Thursday @ 5:30 Malone 228

Agenda
1. Quick Review

2. Introduction to Java Interfaces

3. Introduction to Generics, Exceptions and Arrays

Interfaces

Introduction to Java Interfaces

Objects define their interaction with the outside world through the
methods that they expose. Methods form the object's interface with the
outside world; the buttons on the front of your television set, for example,
are the interface between you and the electrical wiring on the other side of
its plastic casing. You press the "power" button to turn the television on and
off. […] An interface is a group of related methods with empty bodies.

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

interface Counter {
int value();
void up();
void down();

}

+ -

Interfaces Review

• Interfaces establish the “contract” between the implementation
and any potential client code

• Helps to abstract our the key features of a data structure
• You can trivially replace the use of one implementation with another as

long as they implement the same interface
• Teams can work on different pieces of a large system knowing that

everything will work together in the end

• Java Interfaces are groups of related methods with empty
bodies

• Defines the syntax of what is available

interface Counter {
int value();
void up();
void down();

}

Whats wrong with this interface?

Interfaces Review

• Interfaces establish the “contract” between the implementation
and any potential client code

• Helps to abstract our the key features of a data structure
• You can trivially replace the use of one implementation with another as

long as they implement the same interface
• Teams can work on different pieces of a large system knowing that

everything will work together in the end

• Java Interfaces are groups of related methods with empty
bodies

• Defines the syntax of what is available

interface Counter {
int banana();
void orange();
void grape();

}

Whats wrong with this interface?

Algebraic Specification of Abstract Data Types

Counter ADT Specification.

adt Counter # name of specification
uses Integer # specification(s) this one needs (imports)
defines Counter # type(s) defined by this specification

operations # operations(s) defined in this specification
new: ---> Counter # constructor, "convert" TO Counter
up: Counter ---> Counter # mutators, make Counters from Counters
down: Counter ---> Counter # (in Java they'd change their receiver!)
value: Counter ---> Integer # observer, "convert" FROM Counter

axioms # axioms for the operations defined above
value(new()) >= 0 # value of a new Counter is >= 0
value(up(c)) > value(c) # value of up'd Counter is > value before
value(down(c)) <= value(c) # value of down'd Counter is <= value before

Axioms should be read as universally quantified. For example, the
second axiom is "for all counters c, the value of up(c) is > the value
of c" if read out aloud. The "rule of thumb" for finding axioms is to

combine all constructors/mutators with all observers and then
stare at that until we figure it out. :-)

Axioms are enforced by asserts and other test cases!

Variables and Types (1)

adt Counter
uses Integer
defines Counter

operations
new: ---> Counter
up: Counter ---> Counter
down: Counter ---> Counter
value: Counter ---> Integer

axioms
value(new()) >= 0
value(up(c)) > value(c)
value(down(c)) <= value(c)

interface Counter {
int value();
void up();
void down();

}

Does this specification allow for floating point numbers?
How would you fix it?

Variables and Types (2)

adt Counter
uses Float
defines Counter

operations
new: ---> Counter
up: Counter ---> Counter
down: Counter ---> Counter
value: Counter ---> Float

axioms
value(new()) >= 0.0
value(up(c)) > value(c)
value(down(c)) <= value(c)

interface Counter {
float value();
void up();
void down();

}

What if you want to allow the counter to use either floats or ints?
How would you code it?

Variable Types
adt Variable

uses Any
defines Variable<T: Any>

operations
new: T ---> Variable<T>
get: Variable<T> ---> T
set: Variable<T> x T ---> Variable<T>

axioms
get(new(t)) = t
get(set(v, t)) = t

adt Counter
uses Any
defines Counter<T: Any>
operations

new: T ---> Counter<T>
up: Counter<T> ---> Counter<T>
down: Counter<T> ---> Counter<T>
value: Counter<T> ---> T

axioms
value(new(t)) = t
value(up(c)) > value(c)
value(down(c)) <= value(c)

Using t with new() enables
more flexibility than initializing
to 0, 3.14 or any other specific
value

T must define >, <=, and =
new() takes a starting value t

“Any” defines a type with = operation
T stands for “Any” type: int, float, String, …
v and t are values of type T

Java Generics
In a nutshell, generics enable types (classes and interfaces) to be parameters when
defining classes, interfaces and methods. Much like the more familiar formal
parameters used in method declarations, type parameters provide a way for you to re-
use the same code with different inputs.
• Stronger type checks at compile time.

A Java compiler applies strong type checking to generic code and issues errors if
the code violates type safety. Fixing compile-time errors is easier than fixing runtime
errors, which can be difficult to find.

• Elimination of casts.
The following code snippet without generics requires casting:
List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

When re-written to use generics, the code does not require casting:
List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

• Enabling programmers to implement generic algorithms.
By using generics, programmers can implement generic algorithms that work on
collections of different types, can be customized, and are type safe and easier to
read.

https://docs.oracle.com/javase/tutorial/java/generics/why.html

Implementing Variable Types with Generics
Variable.java

public interface Variable <T> {
public T get();
public void set(T t);

}

SimpleVariable.java

public class SimpleVariable<T> implements Variable<T> {
private T value;
public SimpleVariable(T t) {

this.value = t;
}
public T get() {

return this.value;
}
public void set(T t) {

this.value = t;
}
public static void main (String[] args){

SimpleVariable si = new SimpleVariable("Mike");
System.out.println("val: " + si.get() +

" type: " + si.get().getClass().getName());
si.set(1234);
System.out.println("val: " + si.get() +

" type: " + si.get().getClass().getName());
}

}

At compile time it will
automagically define
set(String) and set(Integer)

Implementing Variable Types with Generics

Implementing Variable Types with Generics

SimpleVariable.java

﻿ public static void main (String[] args){
SimpleVariable si = new SimpleVariable("Mike");
System.out.println("val: " + si.get() +

" type: " + si.get().getClass().getName());

SimpleVariable<String> ssi = si;
String vals = ssi.get();
System.out.println(vals);

si.set(1234);
System.out.println("val: " + si.get() +

" type: " + si.get().getClass().getName());

SimpleVariable<Integer> isi = si;
System.out.println(isi.get() + 10);
}

}

Defining the variable type
as SimpleVariable<String>
allows us to skip the cast!

Interfaces Review

• Interfaces establish the “contract” between the implementation
and any potential client code

• Helps to abstract our the key features of a data structure
• You can trivially replace the use of one implementation with another as

long as they implement the same interface
• Teams can work on different pieces of a large system knowing that

everything will work together in the end

• Java Interfaces are groups of related methods with empty
bodies

• Defines the syntax of what is available

interface Counter {
int value();
void up();
void down();

}

• Use an algebraic specification
to define the semantics

• Use genetics to allow flexibility
across types

Agenda
1. Quick Review

2. Introduction to Java Interfaces

3. Introduction to Generics, Exceptions and Arrays

Our first data structure: Arrays

0 1 2 … n-1n-2n-3

t t t … ttt
ge

t(2
)

pu
t(n

-2
, X

)

a:

• Fixed length data structure
• Constant time get() and put() methods
• Definitely needs to be generic J

Array ADT

adt Array
uses Any, Integer
defines Array<T: Any>

operations
new: Integer x T ---> Array<T>
get: Array<T> x Integer ---> T
put: Array<T> x Integer x T ---> Array<T>
length: Array<T> ---> Integer

axioms
get(new(n, t), i) = t
get(put(a, i, t), j) = (if i = j then t else get(a, j))
length(new(n, t)) = n
length(put(a, i, t)) = length(a)

preconditions
new(n, t): 0 < n
get(a, i): 0 <= i < length(a)
put(a, i, t): 0 <= i < length(a)

Enforced by exceptions

Enforced by asserts

Defines method signatures

Uses two related ADTs

Array Interface
/**

Arrays with integer positions.

The constructor should take a length > 0 as well as a default
value to "plaster" all over the new array. The constructor should
throw LengthException if length ≤ 0.

Array(int length, T default) throws LengthException

@param <T> Element type.
*/

public interface Array<T> {
/**

Change value at index.

@param i Index to write value at.
@param t Value to write at index.
@throws IndexException if i < 0 or i > length-1.

*/
void put(int i, T t) throws IndexException;

...

Array Interface
...

/**
Value at index.

@param i Index to read value at.
@return Value read at index.
@throws IndexException if i < 0 or i > length-1.

*/
T get(int i) throws IndexException;

/**
Length of array.

@return Length of array, always > 0.
*/
int length();

}

Array Exceptions
IndexException.java

/**
Exception for invalid index.

Data structures using (integer) indices throw IndexException
if a given index is out of range.

*/
public class IndexException extends RuntimeException {

private static final long serialVersionUID = 0L;
}

LengthException.java

/**
Exception for invalid length.

Data structures that have a fixed (integer) length throw
LengthException if a given length is out of range.

*/
public class LengthException extends RuntimeException {

private static final long serialVersionUID = 0L;
}

The type is the main item of interest, but other information could be returned

Simple Array 1
SimpleArray.Java
/**

Array implementation on top of basic Java array.

The obvious implementation of the Array interface, absolutely positively
nothing fancy going on here.

There are two reasons for this class to exist: First it's an example for
the style of code we're about to write a lot of. Second it's useful
because Java's generics don't really play well with Java's basic arrays;
we'll use SimpleArray in lots of places where Java's arrays would give us
generic grief.

@param <T> Element type.
*/
public class SimpleArray<T> implements Array<T> {

// The underlying data structure of our abstract Array.
private T[] data;

/**
Constructs a new SimpleArray.

@param n Length of array, must be n > 0.
@param t Default value to store in each slot.
@throws LengthException if n ≤ 0.

*/
public SimpleArray(int n, T t) throws LengthException {

...

Why bother?

Simple Array 2
...

public SimpleArray(int n, T t) throws LengthException {
if (n <= 0) {

throw new LengthException();
}

// This cast works around Java's problems with generic arrays.
// The resulting warning is acceptable because there simply is
// no better way of doing this.
this.data = (T[]) new Object[n];

// Array slots are null by default.
if (t == null) {

return;
}

for (int i = 0; i < n; i++) {
this.data[i] = t;

}
}

...

Workaround for java syntax

Simple Array 3
...

// If we let ArrayIndexOutOfBoundsException propagate, we leak an
// implementation detail we should probably hide. (Also that name
// is so horrible, it deserves to live in a dark cave in Mordor.)

@Override
public T get(int i) throws IndexException {

try {
return this.data[i];

} catch (ArrayIndexOutOfBoundsException e) {
throw new IndexException();

}
}

@Override
public void put(int i, T t) throws IndexException {

try {
this.data[i] = t;

} catch (ArrayIndexOutOfBoundsException e) {
throw new IndexException();

}
}

@Override
public int length() {

return this.data.length;
}

...

These let us “hide” the
exceptions from our
underlying datatypes

Simple Array 4
...

public static void main(String [] args) throws
IndexException, LengthException {
Array<String> a = new SimpleArray<String>(4, "226");
assert a.length() == 4;
for (int i =0; i <a.length(); i++){

assert a.get(i).equals("226");
}
a.put(2, "Peter");
assert a.length() == 4;
assert a.get(2).equals ("Peter");
assert a.get(0).equals ("226");
assert a.get(1).equals ("226");
assert a.get(3).equals ("226");

System.out.println("Passed the value assertions");
...

Simple Array 5
...

try {
a.put(a.length(), "Paul");
System.out.println("Didnt get the exception");

}
catch (IndexException e)
{
System.out.println("Caught IndexException (as expected)");

}

try {
Array<String> b = new SimpleArray<String>(0, "Mike");
System.out.println("No exception after creating second array");

}
catch (LengthException e)
{
System.out.println("Caught LengthException (as expected)");

}
}

}

Running with Assertions

$ java -ea SimpleArray

Next Steps
1. Reflect on the magic and power of interfaces, generics, and exceptions J

2. Check on Piazza

3. Download class virtual machine, get CS account and/or set up Linux!

4. Get comfortable with a editor (VI rules!) and/or an IDE (Eclipse for Java)

5. Get comfortable with checkstyle

Welcome to CS 600.226
https://github.com/schatzlab/datastructures2018

Questions?

https://github.com/schatzlab/datastructures2018

