
CS 600.226: Data Structures
Michael Schatz

Aug 30, 2018
Lecture 1: Introduction & Motivation

Welcome!
Course Webpage: https://github.com/schatzlab/datastructures2018
Course Discussions: https://piazza.com/jhu/fall2018/600226/home

Office Hours: Wednesday @ 2:45pm – 4pm, Malone 323
CA office hours throughout the week J

Programming Language: Java with Checkstyle and JUnit
Virtual Machine (Lubuntu) or CS acct.

Accounts for Majors (CS/CE) & Minors:
If you do not already have a personal CS departmental unix account, please
complete an account request form ASAP. Check "Linux Undergrad" for
account type. (Note - must be declared to be eligible.)

Accounts for Others:
We will need to make accounts. Do people need them?

CS Lab access:
Students must see Steve DiBlasio, with your J-card, in Malone G61A to get
CS Lab access. The CS Lab is Malone 122 and that's where course TA/CAs
will be available for help.

https://github.com/schatzlab/datastructures2018
https://piazza.com/jhu/fall2018/600226/home

References and Resources

Primary Texts (Recommended, not required):
• (on-line interactive) OpenDSA, JHU version
• (print) Clifford A. Shaffer, Data Structures and Algorithm Analysis (Java

Version) (Edition 3.2), available on-line and through Dover Publications.
• Peter Froehlich’s Lecture notes posted to Piazza

Alternate Texts:
• Sedgewick & Wayne, Algorithms: JHU Library online edition
• Weiss, Data Structures and Algorithm Analysis in Java

Other Resources:
• Google J
• Code examples from Intro Programming in Java (600.107) - look in the

sub-directories for examples of each topic.
• algoviz.org collection of visualizations for various data structures and

algorithms
• Java API -- description of classes and methods

Grading and Help
Assessments:
• Weekly Assignments: 50% Due at 11:59pm ~one week later
• Midterm: 20% In class (~Friday Oct 12)
• Final Exam: 30% During exam week (Date TBD)

• In-class: Not graded, but there to help you!

Policies:
• Percentile scores assigned relative to the highest points awarded
• Fixed cutoffs for A+(>97); A(>93); A- (>90); B+ (>87); B (>83); B- (>80); etc
• Automatic testing and grading of coding assignments using gradescope

• Grace period: 10% penalty for up to 1 hour late
• Late Days: Five (5) chances to extend the deadline by 24 hours without any

penalty

WARNING: If you submit >1 hour late and you don't have a
late day left, then you will receive 0 points

Details:
https://github.com/schatzlab/datastructures2018/tree/master/policies

Course Webpage
https://github.com/schatzlab/datastructures2018

https://github.com/schatzlab/datastructures2018

Course Webpage
https://github.com/schatzlab/datastructures2018

https://github.com/schatzlab/datastructures2018

Piazza
https://piazza.com/jhu/fall2018/600226/home

https://piazza.com/jhu/fall2018/600226/home

A Little About Me

Born
RFA

CMU

TIGR
UMD

CSHL

JHU

Schatzlab Overview

Agricultural
Genomics

Genomes &
Transcriptomes

Lemmon et al. (2016)
Ming et al. (2015)

Human
Genetics

Role of mutations in
disease

Nattestad et al. (2018)
Feigin et al. (2017)

Algorithmics &
Systems Research

Ultra-large scale
biocomputing

Stevens et al. (2015)
Marcus et al. (2014)

Single Cell &
Single Molecule

CNVs, SVs, &
Cell Phylogenetics

Sedlazeck et al. (2018)
Garvin et al. (2015)

Personal Genomics
How does your genome compare to the reference?

Heart Disease

Cancer

Technology
Innovator

http://www.genome.gov/sequencingcosts/

Worldwide capacity exceeds 100 Pb / year
Approximately 500k human genomes sequenced

… on track to 1 Eb / year by 2020

… on track to 1 Zb / year by 2030

A zetta-what?

Cost per Genome

How much is a zettabyte?

Unit Size ~2x

Byte 1 20

Kilobyte 1,000 210

Megabyte 1,000,000 220

Gigabyte 1,000,000,000 230

Terabyte 1,000,000,000,000 240

Petabyte 1,000,000,000,000,000 250

Exabyte 1,000,000,000,000,000,000 260

Zettabyte 1,000,000,000,000,000,000,000 270

How much is a zettabyte?

100 GB / Genome
4.7GB / DVD

~20 DVDs / Genome

X

10,000,000,000 Genomes

=

1ZB Data
200,000,000,000 DVDs

150,000 miles of DVDs
~ ½ distance to moon

Both currently ~100PB
And growing exponentially

Data Structures

Lists Trees Graphs

• Single/Double
• Stacks/Queues/Deques
• Skip

• Binary, AVL Trees
• Heaps
• Self Balancing

• Graph Representations
• Traversing
• Union Find

Building, searching, traversing, analyzing
Make you big-data superheros J

Instagram

Data Structures of Instagram

Incredibly popular app:
~800M active users
>20B photos, >60M per day!

https://www.quora.com/How-many-photos-are-being-uploaded-on-Instagram-daily

What if all users search at the same time?
230 days * 800M users = 184B days

= ~500M years

How to find all photos near a given site?
Modern clock speed: 1 instruction / nanosec
Practical processing speed: 1000 photos / sec

1M seconds = ~11.5 days
20B photos / 1000 photos / s = 20M sec

= ~230 days

How can we make it go faster?

Data Structures of Instagram

Inside Instagram

Search: JHU
Where: 39.32N 76.62W

https://en.wikipedia.org/wiki/Great-circle_distance

Photo #1
Where: 37.77N 122.41W (SFO)
URL: instagram.com/p/1

Photo #2
Where: 20.63N 76.77W (Cuba)
URL: instagram.com/p/2

…

Photo #3526224
Where: 39.32N 76.63W (JHU!)
URL: instagram.com/p/3526224

Show me the photos!

Linear Search (aka Brute force): try all 20B photos

#1: 37.77N 122.41W: No
#2: 20.63N 76.77W: No
#3: 21.30N 157.85W: No

...
#3,526,224 39.32N 76.63W: Yes!

...
#19,999,999,999 48.85N 2.34E No

#20,000,000,000 35.65N 139.83E No

If you get really lucky you might find a few nearby photos quickly that
you can return first

What happens if there are no photos at the search site?

Show me the photos!

What can you do to speed up the search?
Note: The computer can only “see” one photo at a time

Show me the photos!

West East

Partition the data into 2 lists, each search takes half as long!

Show me the photos!

West East

Why is this a bad split? What would be the perfect split?

Show me the photos!

West East

Ideal split will be exactly 50/50 (median east-west coordinate of sites)

Show me the photos!

West-West East-East

Partition again! Each sublist has N/4 elements!

West-East East-West

Show me the photos!

Partition again! Each sublist has N/8 elements!

WWW WWE WEW WEE EWW EWE EEW EEE

Show me the photos!

Partition again! Each sublist has N/16 elements!

Show me the photos!

Partition again! Each sublist has N/16 elements!

Only slicing by
East/West creates
tall skinny slices
with poor locality

Show me the photos!

West East

Ideal split will be exactly 50/50 (median east-west coordinate)

Show me the photos!

West-North East-North

Alternate splits: Each sublist has N/4 element & balanced in both dimensions

West-South
East-South

Show me the photos!

WNW ENE

Each sublist has N/8 elements & Balanced in both dimensions

WSW ESE

WNE

WSE

ENW

ESW

Show me the photos!

WNWN ENEN

Each sublist has N/16 elements & Balanced in both dimensions

WSWS ESES

WNEN

WSES

ENWN

WNWS

ENES

WNES

ENWS

WSWN

ESEN

WSEN

ESWN

ESWS

Advanced Data Structure #1: K-d tree

Balanced Binary Search Tree invented by Jon Louis Bentley in 1975
Generalization of the ubiquitous binary search tree

Very fast to build & search almost any type of spatial data

Photo getNearest(Point myLoc)
{
// Region class stores partitions & photos
Region r = allPhotos

// While more partitions to go
while (r.numPhotos() > 1)
{
// Partition on Lat/Long
Dimension d = r.splitDim()

// Check the relevant coordinate
if (myLoc.getDim(d) <= r.split)
{
// branch to the west/south
r = r.lo()

}
else
{
// branch to the east/north
r = r.hi()

}
}

// just 1 photo, done!
return r.getPhoto()

}

k-d tree pseudocode

K-d tree data structure to spatially index a
large data index the photos

What else might you want to index?

The ‘k’ in k-d tree emphasizes that it works in any number of dimensions
Just gets a little harder to draw for k > 3 J

2d tree:
Alternate left/right, top/bottom

3d tree:
Alternate left/right, top/bottom, up/down

k-d trees in higher dimensions

Alternative is to build multiple indices with pointers (URLs) to same set of photos

Divide and Conquer
• Brute force is slow because we have to check every single element

• How can we split up the unsorted list into independent ranges?
• Lets recursively split up the elements into greater than/less than range based

on the current split line (latitude/longitude)

n

[How many times can we split a list in half?]

=< > 2 x n/2

=< > = =< > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

Dividing N in half: 20 Billion
• Step 0: 20,000,000,000 possible elements (N)

• Step 1: 10,000,000,000 possible elements (N/2)

• Step 2: 5,000,000,000 possible elements (N/4)

• …

• Step X: 1 possible element (N/N)

Dividing N in half: 20 Billion
• Step 0: 20,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Dividing N in half: 20 Billion
• Step 0: 20,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N

Dividing N in half: 20 Billion
• Step 0: 20,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N
lg(2X) ≥ lg(N)
X ≥ lg(N)

X = ???

Dividing N in half: 20 Billion
• Step 0: 20,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N
lg(2X) ≥ lg(N)
X ≥ lg(N)

X = 35
571.4 million times faster than brute force!

Dividing N in half: 20 TRILLION
• Step 0: 20,000,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N
lg(2X) ≥ lg(N)
X ≥ lg(N)

X = ???

Dividing N in half: 20 TRILLION
• Step 0: 20,000,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N
lg(2X) ≥ lg(N)
X ≥ lg(N)

X = 45
571.4 billion times faster than brute force!

Dividing N in half: 20 QUADRILLION
• Step 0: 20,000,000,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N
lg(2X) ≥ lg(N)
X ≥ lg(N)

X = ???

Dividing N in half: 20 QUADRILLION
• Step 0: 20,000,000,000,000,000 possible elements (N/1 = N/20)

• Step 1: 10,000,000,000,000,000 possible elements (N/2 = N/21)

• Step 2: 5,000,000,000,000,000 possible elements (N/4 = N/22)

• …

• Step X: 1 possible element (N/N = N/2X)

Find X such that: 2X ≥ N
lg(2X) ≥ lg(N)
X ≥ lg(N)

X = 55
571.4 trillion times faster than brute force!

How much is a zettabyte?

Unit Size ~2x

Byte 1 20

Kilobyte 1,000 210

Megabyte 1,000,000 220

Gigabyte 1,000,000,000 230

Terabyte 1,000,000,000,000 240

Petabyte 1,000,000,000,000,000 250

Exabyte 1,000,000,000,000,000,000 260

Zettabyte 1,000,000,000,000,000,000,000 270

How much is a zettabyte?

Unit Size ~2x

Byte 1 20

Kilobyte 1,000 210

Megabyte 1,000,000 220

Gigabyte 1,000,000,000 230

Terabyte 1,000,000,000,000 240

Petabyte 1,000,000,000,000,000 250

Exabyte 1,000,000,000,000,000,000 260

Zettabyte 1,000,000,000,000,000,000,000 270

For all practical purposes:
lg(X) << 70

Next Steps
1. Reflect on the magic and power of log J

2. Register on Piazza

3. Set up Dropbox for yourself!

4. Get comfortable with a editor (VI rules!) and the command line

Welcome to CS 600.226
https://github.com/schatzlab/datastructures2018

Questions?

https://github.com/schatzlab/datastructures2018

