Lecture 15. ChromHMM & ENCODE

Michael Schatz

March 23, 2020 JHU 601.749: Applied Comparative Genomics

Assignment 5: Due Mon Mar 23

Assignment 5: Annotations and RNA-seq

Assignment Date: Wednesday, March 4, 2020 Due Date: Wednesday, March 11, 2020 @ 11:59pm

Assignment Overview

In this assignment, you will analyze gene expression data and learn how to make several kinds of plots in the environment of your choice. (We suggest Python or R.) Make sure to show your work/code in your writeup! As before, any questions about the assignment should be posted to Plazza.

Question 1. Gene Annotation Preliminaries [10 pts]

Download the annotation of build 38 of the human genome from here: ftp://ftp.ensembl.org/pub/release-87/gtl/homo_sepiens/Homo_sepiens.GRCh38.87.gtl.gz

- Question 1a. How many annotated protein coding genes are on each autosome of the human genome? [Hint: Protein coding genes will have "gene" in the 3rd column, and contain the following text: gene, biotype "protein, coding"]
- Question 1b. What is the maximum, minimum, mean, and standard deviation of the span of protein coding genes? [Hint: use the genes identified in 1b]
- Question Tc. What is the maximum, minimum, mean, and standard deviation in the number of exons for protein coding genes? (Hint: you should separately consider each isoform for each protein coding gene)

Question 2. Sampling Simulation [10 pts]

A typical human cell has ~250,000 transcripts, and a typical bulk RNA-seq experiment may involve millions of cells. Consequently in an RNAseq experiment you may start with trillions of RNA molecules, although your sequencer will only give a few million to billions of reads. Therefore your RNAseq experiment will be a small sampling of the full composition. We hope the sequences will be a representative sample of the total population, but if your sample is very unlucky or biased it may not represent the true distribution. We will explore this concept by sampling a small subset of transcripts (500 to 50000) out of a much larger set (1M) so that you can evaluate this bias.

In data1.txt with 1,000,000 lines we provide an abstraction of RNA-seq data where normalization has been performed and the number of times a gene name occurs corresponds to the number of transcripts in the sample.

Project Proposal: Due Mon Mar 23

Project Proposal

Assignment Date: Monday March 9, 2020 Due Date: Monday, March 16 2020 @ 11:59pm

Review the Project Ideas page

Work solo or form a team for your class project (no more than 3 people to a team).

The proposal should have the following components:

- · Name of your team
- List of team members and email addresses
- Short title for your proposal
- 1 paragraph description of what you hope to do and how you will do it
- References to 2 to 3 relevant papers
- References/URLs to datasets that you will be studying (Note you can also use simulated data).
- · Please add a note if you need me to sponsor you for a MARCC account (high RAM, GPUs, many cores, etc)

Submit the proposal as a 1 to 2 page PDF on GradeScope (each team member should submit the same PDF). After submitting your proposal, we will schedule a time to discuss your proposal, especially to ensure you have access to the data that you need. The sooner that you submit your proposal, the sooner we can schedule the meeting. No late days can be used for the project.

Later, you will present your project in class during the last week of class. You will also submit a written report (5-7 pages) of your project, formatting as a Bioinformatics article (Intro, Methods, Results, Discussion, References). Word and LaTeX templates are available at https://academic.oup.com/bioinformatics/pages/submission_online

Please use Plazza to coordinate proposal plans!

*-seq in 4 short vignettes

Human Evolution

As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific genes that have been lost in each of the other five species under consideration.

Genome analysis of the platypus reveals unique signatures of evolution (2008) Nature. 453, 175-183 doi:10.1038/nature06936

Finding the fifth base: Genome-wide sequencing of cytosine methylation Lister and Ecker (2009) *Genome Research*. 19: 959-966

Bisulfite Conversion

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications Krueger and Andrews (2010) *Bioinformatics*. 27 (11): 1571-1572.

ChIP-seq

Genome-wide mapping of in vivo protein-DNA interactions.

Johnson et al (2007) Science. 316(5830):1497-502

Transcription

https://www.youtube.com/watch?v=WsofH466lqk

Chromatin compaction model

Nucleosome is a basic unit of DNA packaging in eukaryotes

- Consists of a segment of 146bp DNA wound in sequence around eight histone protein cores (thread wrapped around a spool) followed by a ~38bp linker
- Under active transcription, nucleosomes appear as "beads-on-a-string", but are more densely packed for less active genes

Nucleosomes form the fundamental repeating units of eukaryotic chromatin

 Used to pack the large eukaryotic genomes into the nucleus while still ensuring appropriate access to it (in mammalian cells approximately 2 m of linear DNA have to be packed into a nucleus of roughly 10 µm diameter).

ChIP-seq: Histone Modifications

Type of		Histone														
modification	H3K4	НЗК9	H3K14	H3K27	H3K79	H3K122	H4K20	H2BK5								
mono-methylation	activation ^[6]	activation ^[7]		activation ^[7]	activation[7][8]		activation ^[7]	activation ^[7]								
di-methylation	activation	repression ^[3]	1.0	repression ^[3]	activation ^[8]											
tri-methylation	activation ^[9]	repression ^[7]		repression ^[7]	activation, ^[0] repression ^[7]			repression ^[3]								
acetylation		activation ^[9]	activation ^[9]	activation ^[10]		activation ^[11]										

- H3K4me3 is enriched in transcriptionally active promoters.^[12]
- H3K9me3 is found in constitutively repressed genes.
- H3K27me is found in facultatively repressed genes.^[7]
- H3K36me3 is found in actively transcribed gene bodies.
- H3K9ac is found in actively transcribed promoters.
- H3K14ac is found in actively transcribed promoters.
- H3K27ac distinguishes active enhancers from poised enhancers.
- H3K122ac is enriched in poised promoters and also found in a different type of putative enhancer that lacks H3K27ac.

HI-C: Mapping the folding of DNA

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome Liberman-Aiden et al. (2009) *Science*. 326 (5950): 289-293

Putting it all together!

We can call peaks, but...

We need a way to summarize the combinatorial patterns of multiple histone marks into meaningful biological units

ChromHMM

ChromHMM is software for learning and characterizing chromatin states.

- ChromHMM can integrate multiple chromatin datasets such as ChIP-seq data of various histone modifications to discover de novo the major re-occuring combinatorial and spatial patterns of marks.
- ChromHMM is based on a multivariate Hidden Markov Model that explicitly models the presence or absence of each chromatin mark.
- The resulting model can then be used to systematically annotate a genome in one or more cell types.

ChromHMM: automating chromatin-state discovery and characterization Ernst & Kellis (2012) Nature Methods 9, 215–216. doi:10.1038/nmeth.1906

The Workflow

- 1. Get ChIP-seq raw reads for different histone modifications
- 2. Align the reads to a reference genome
- 3. Convert aligned reads in bed format
- 4. Create Binned and Binarized Tracks
- 5. Train the model
- 6. Infer the states
- 7. Interpretation

Create Binned and Binarized Tracks

• ChromHMM quantify the presence or absence of each mark in bins of fixed size

Genomic sequence

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010; Ernst and Kellis, Nature Methods 2012

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010; Ernst and Kellis, Nature Methods 2012

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012

Transition and Emission Parameters

Emission parameters

Transition parameters

Enriched functional category

Þ			63	603	101	5	8	2	0		C	Cove	rage	3		62	Be			192	ä		
	State	CTCF	Н3К27п	НЗКЗВл	H4K20m	H3K4me	H3K4me	H3K4me	H3K27a	H3K9ac	WCE	Median	H1 ES	GM	Median	±2 kb T5	Conserv non-exo	DNase (K562)	o-Myc (K562)	NF-xB (GM128	Transcri	Nuclear	Candidate state annotation
	1	16	2	2	6	17	93	99	95	98	2	0.6	0.5	1.2	1.0	83	3.8	23.3	82.0	40.7	0.2	0.15	Active promoter
	2	12	2	6	9	53	94	96	14	-44	1	0.5	1.2	1.3	0.4	50	2.8	15.3	12.6	5.8	0.6	0.30	Weak promoter
1	3	13	72	0	9	48	78	49	1	10	1	0.2	4.0	1.0	0.6	49	43	10.8	3.1	1.0	0.4	0.68	Inactive/poised promoter
8	- 4	11	1	15	11	96	89	75	87	86	4	0.7	0.1	1.1	0.6	23	2.7	23.1	31.8	49.0	1.3	0.05	Strong enhancer
3	5	5	0	10	3	88	57	5	84	25	1	1.2	0.2	0.7	0.6	3	1.8	13.6	6.3	15.8	1.4	0.10	Strong enhancer
40	6	7	1	1	3	58	75	8	6	.5	1	0.9	1.3	1.0	0.2	17	2.4	11.9	5.7	7.0	1.1	0.31	Weak/poised enhancer
-5	7	2	1	2	1	58	3	0	-6	2	1	1.9	1.2	1.1	0.4	4	1.5	5.1	0.6	2.4	1,3	0.20	Weak/poised enhancer
2	8	92	2	1	3	6	3	0	0	1	1	0.5	1.4	1.0	0.4	3	1.5	12.8	2.5	1.2	1.1	0.61	Insulator
5	9	5	0	43	43	37	11	2	9	4	1	0.7	1.3	1.0	0.8	4	1.1	4.5	0.7	0.8	2.4	0.02	Transcriptional transition
2	10	1	0	47	3	0	0	0	0	0	1	4.3	0.6	1.2	3.0	1	0.9	0.3	0.0	0.0	2.5	0.11	Transcriptional elongation
0	11	0	0	3	2	0	0	0	0	0	0	12.5	1.3	0.8	2.6	2	0.9	0.3	0.0	0.1	1.9	0.24	Weak transcribed
	12	1	.27	0	2	0	0	0	0	0	0	4,1	0.3	0.7	2.8	5	1.4	0.3	0.0	0.1	0.8	0.63	Polycomb repressed
	13	0	0	0	0	0	0	0	0	0	0	71.4	1.0	1.0	10.0	1	0.9	0.1	0.0	0.0	0.7	1.30	Heterochrom; low signal
	14	22	28	19	41	6	5	26	5	13	37	0.1	0.9	1.2	0.6	3	0.4	1.9	0.3	0.2	0.4	1.44	Repetitive/CNV
	15	85	85	91	88	76	77	91	73	85	.78	0.1	0.9	1.0	0.2	1	0.2	5,9	9.5	7.4	0.4	1,30	Repetitive/CNV
		Chro	matir	n mar	k ob	serva	tion f	regu	ency	(%)		(96)	(foi	d)	(kb)	(96)	Fur	octiona	al enric	chmer	nts (fo	(bid	

The states predicted by the HMM are *statistical* entities (#1 – #15) The states we want are *biological* entities (Active/Weak/Poised promoter)

Investigate the properties of the statistical entities to label them with biological functions => Supervised learning problem ☺

Chromatin states dynamics across nine cell types

Polycomb-repressed

Heterochrom; low signal

Ernst et al, Nature 2011

ARTICLE

doi:10.1038/nature11247

An integrated encyclopedia of DNA elements in the human genome

The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

An integrated encyclopedia of DNA elements in the human genome

The ENCODE Project Consortium*

doi:10.1038/nature11232

ARTICLE

Research

Research

The accessible chromatin landscape of the human genome

Long noncoding RNAs are rarely translated in two human cell lines

Discovery of hundreds of mirtrons in mouse and human small RNA data

GENCODE: The reference human genome annotation for The ENCODE Project

Research

Resource=

Personal and population genomics of human regulatory variation

Research-

Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs

Method

Combining RT-PCR-seq and RNA-seq to catalog all genic elements encoded in the human genome

ARTICLE

Architecture of the human regulatory network derived from ENCODE data

LETTER

The long-range interaction landscape of gene promoters

Predicting cell-type-specific gene expression from regions of open chromatin

Resource=

Method-

ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

Resource

Annotation of functional variation in personal genomes using RegulomeDB

Method

Linking disease associations with regulatory information in the human genome

RESEARCH

Modeling gene expression using chromatin features in various cellular contexts

ARTICLE

Landscape of transcription in human cells

ARTICLE

An expansive human regulatory lexicon encoded in transcription factor footprints

RESEARCH

doi:10.1038/sature11279

Open Access

Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3

RESEARCH

Open Access

doi:10.1038/nature11233

doi:10.1038/nature11212

Open Access

Functional analysis of transcription factor binding sites in human promoters

RESEARCH

Open Access

Analysis of variation at transcription factor binding sites in *Drosophila* and humans

RESEARCH

Open Access

Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors

Production Groups

Broad Institute

- Cold Spring Harbor;
- Centre for Genomic Regulation (CRG):
- University of Connecticut Health Center, UCSD
- HudsonAlpha; Pennsylvania State, UC In/ne: Duke: Catlerth
- OUCSD: Salk Institute ; Joint Genome Institute.
- Lawrence Berkeley National Laboratory, UCSD
- Standard, University of Chicago: Yale
- University of Washington; Fred Hutchmson Cancer Research Center; University of Matsachusetts Medical School

Data Coordination Center Stanford UCSC

Data Analysis Center Ouriversity of Massachusetts Medical School Yale, MT, Stanford, Harvard, University of Wastington

Technology Development Groups

- O Washington University, St. Louis
- USC; Onio State University; UC, Davis
- University of Washington
- Stoan-Kettering, Well Cornell Medical College
- Princeton: Weizmann
- O University of Michigan
- 😳 Broad Institute
- University of Washington; UCSF
- O Advanced RMA Technologies, LLC
- Harvard

Computational Analysis Groups

- Berkeley; Wayne State University
- OMT
- University of Wisconsin
- O Sican-Kattering: Broad Institute
- Stanford
- UCLA

Affiliated Groups Welcome Trust Sanger Institute Phonida State University

ENCODE Data Sets

1,640 data sets total over 147 different cell types

ENCODE Data Sets

MAKING A GENOME MANUAL

Scientists in the Encyclopedia of DNA Elements Consortium have applied 24 experiment types (across) to more than 150 cell lines (down) to assign functions to as many DNA regions as possible — but the project is still far from complete.

1,640 data sets total over 147 different cell types

Cell Types

Tier I (3 samples, most complete analysis)

- GM12878 (NA12878): a lymphoblastoid cell line produced from the blood of a female donor with northern and western European ancestry by EBV transformation. It was one of the original HapMap cell lines and has been deeply sequenced using the Solexa/Illumina platform.
- K562: an immortalized cell line produced from a female patient with chronic myelogenous leukemia (CML). It is a widely used model for cell biology, biochemistry, and erythropoiesis. It grows well, is transfectable, and represents the mesoderm linage.
- HI-hESC: HI-human embryonic stem cells

Tier 2 (9 samples, intermediate analysis)

- HeLa-S3: cervical carcinoma cells
- HepG2: hepatoblastoma cells & model system for metabolism disorders
- HUVECs: Primary (non-transformed) human umbilical vein endothelial cells
- Several other major cell lines from cancer and normal tissues

Tier 3 (135 samples, partial analysis)

- Everything else: many major cell lines and body organs

Assays

I. RNA transcribed regions

- RNA-seq: General sequencing of RNA
- CAGE: Identify transcription start sites
- RNA-PET: full length RNA analysis and manual annotation

2. Protein-coding regions

Mass Spectrometry: Sequencing of proteins

3. Transcription-factor-binding sites

- ChIP-seq: 119 of 1,800 known transcription factors
- DNase-seq: open chromatin accessible to Dnase I cutting, "hallmark of regulatory regions"

4. Chromatin structure

- DNase-seq: 13 of more than 60 currently known histone or DNA modifications
- FAIRE-seq: nucleosome-depleted regions
- Histone ChIP-seq: histone proteins pull down and sequencing
- MNase-seq: nucleosome identification

5. DNA methylation sites

- RRBS assay: Methyl-seq at targeted sites near restriction binding sites

Data Analysis Overview

ARTICLE

doi:10.1038/nature11247

An integrated encyclopedia of DNA elements in the human genome

The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

Major Findings

- I. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancerlike features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

- 1. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancerlike features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

Summary of ENCODE elements

"Accounting for all these elements, a surprisingly large amount of the human genome, 80.4%, is covered by at least one ENCODE-identified element"

- •62% transcribed
- •56% enriched for histone marks
- •15% open chromatin
- •8% TF binding
- •19% At least one DHS or TF Chip-seq peak
- •4% TF binding site motif
- •(Note protein coding genes comprise ~2.94% of the genome)

"Given that the ENCODE project did not assay all cell types, or all transcription factors, and in particular has sampled few specialized or developmentally restricted cell lineages, these proportions must be underestimates of the total amount of functional bases."

Pervasive Transcription and Regulation

Defining functional DNA elements in the human genome Kellis et al (2014). PNAS 6131–6138, doi: 10.1073/pnas.1318948111

Redefining the concept of a gene

As a consequence of both the expansion of genic regions by the discovery of new isoforms and the identification of novel intergenic transcripts, there has been a marked increase in the number of intergenic regions (from 32,481 to 60,250) due to their fragmentation and a decrease in their lengths (from 14,170 bp to 3,949 bp median length; Fig. 6). Concordantly, we observed an increased overlap of genic regions. As the determination of genic regions is currently defined by the cumulative lengths of the isoforms and their genetic association to phenotypic characteristics, the likely continued reduction in the lengths of intergenic regions will steadily lead to the overlap of most genes previously assumed to be distinct genetic loci. This supports and is consistent with earlier observations of a highly interleaved transcribed genome12, but more importantly, prompts the reconsideration of the definition of a gene. As this is a consistent characteristic of annotated genomes, we would propose that the transcript be considered as the basic atomic unit of inheritance. Concomitantly, the term gene would then denote a higher-order concept intended to capture all those transcripts (eventually divorced from their genomic locations) that contribute to a given phenotypic trait. Co-published ENCODE-related papers can be explored online via the Nature ENCODE explorer (http://www.nature.com/ENCODE), a specially designed visualization tool that allows users to access the linked papers and investigate topics that are discussed in multiple papers via thematically organized threads.

Landscape of transcription in human cells Djebali et al. (2012) *Nature*. doi:10.1038/nature11233

Figure 6 | Size distribution of intergenic regions. Novel genes increase the proportion of small intergenic regions.

Figure 3 | Abundance of gene types in cellular compartments. Twodimensional kernel density plots of nuclear over cytosolic enrichment (y axis) versus overall gene expression in the whole cell extract (x axis), for protein coding, long non-coding and novel genes over all cell lines. Only genes present

Major Findings

- I. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancerlike features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

Impact and Evidence of Selection

Impact and Evidence of Selection

Impact and Evidence of Selection

104,343,413 primate-specific bases (excluding repetitive elements), 67,769,372 (65%) are found within ENCODE-identified elements.

210

-4×10-

A 10"

Mammalian conservation

man diversity (inverted scale)

... An appreciable proportion of the unconstrained elements are lineagespecific elements required for organismal function, consistent with longstanding views of recent evolution, and the remainder are probably 'neutral' elements that are not currently under selection but may still affect cellular or larger scale phenotypes without an effect on fitness.

DAF

22222222

Motif position

Major Findings

- I. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancer-like features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

Signal Integration

	+				1.1		1.000			-		P 1/12	THE R. L. CO., LANSING	-		1.00	
contraine contraine	- Part		10.	i i		¥ .	ie.		1		÷ .	2		1		*	1
											1		-	-	_	-	
(and	ALC: N		-		-		the second		1			-		-			
	intimat .		-		-				+	4 m 4		-		4-		-1	
	- Dentify-		L.		**				1	-	Τ.			1		1	1 1
	100a		- La		+-					-	1.4					-	
	-001	- Alter	A. 44						1	1.	A 4	-		1			
	-month		1.410	and the life of	with the Road	fact and it								-	in work	-	- Mar
		School Robert	1.2.180.0.8	And and and the other	Peter marks side	and allow	Add attacked	ta lei, ekoloni	and the second	1.1	thanks a	1 mile	1		- Andrewson and a state of the		(Cartalia
	man					11			-		1		1.1.1				

Label	Description	Details*	Callour
CTCF	CTCF-enriched element	Sites of CTCF signal lacking histone modifications, often associated with open chromatin. Many probably have a function in insulator assays, but because of the multifunctional nature of CTCF, we are conservative in our description. Also enriched for the cohesin components RAD21 and SMC3; CTCF is known to recruit the cohesin complex.	Turquoise
E	Predicted enhancer	Regions of open chromatin associated with H3K4me1 signal. Enriched for other enhancer- associated marks, including transcription factors known to act at enhancers. In enhancer assays, many of these (>50%) function as enhancers. A more conservative alternative would be ob- regulatory regions. Enriched for sites for the proteins encoded by EP300, POS, POSL1, GATA2, HDAC8, JUNB, JUNB, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes in K562 cells. Have nuclear and whole-cell RNA signal, particularly poly(A)— fraction.	Orange
PF	Predicted promoter flanking region	Regions that generally surround TSS segments (see below).	Light red
R	Predicted represed or low-activity region	This is a merged state that includes H3K27me3 polycomb-enriched regions, along with regions that are silent in terms of observed signal for the input assays to the segmentations (low or no signal). They may have other signals (for example, RNA, not in the segmentation input data). Enriched for sites for the proteins encoded by REST and some other factors (for example, proteins encoded by BRF2, CEBPB, MARK, TRIM28, 2NF274 and SETDB1 genes in K562 cells).	Grey
TSS	Predicted promoter region including TSS	Found close to or overlapping GENCODE TSS sites. High precision/recall for TSSs. Enriched for H3K4me3. Sites of open chromatin. Enriched for transcription factors known to act close to promoters and polymerases Pol II and Pol III. Short RNAs are most enriched in these segments.	Bright red
т	Predicted transcribed region	Overlap gere bodies with H3K36me3 transcriptional elongation signal. Enriched for phosphorylated form of Pol II signal (elongating polymerase) and poly(4)* RNA, especially cytoplasmic.	Dark green
WE	Predicted weak enhancer or open observation cis-regulatory element	Similar to the E state, but weaker signals and weaker enrichments.	Yellow

 Use ChromHMM and Segway to Summarize the individual assays into 7 functional/regulatory states

Major Findings

- I. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancerlike features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

Expression Modeling

b CAGE poly(A)* K562 whole cell

- Developed predictive models to explore the interaction between histone modifications and transcription factor binding towards level of transcription
- The best models had two components: an initial classification component (on/off) and a second quantitative model component
- Together, these correlation models indicate both that a limited set of chromatin marks are sufficient to 'explain' transcription and that a variety of transcription factors might have broad roles in general transcription levels across many genes

Modeling gene expression using chromatin features in various cellular context

Dong et al. (2012) Genome Biology. 12:R53

Major Findings

- I. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancerlike features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

Many variants in ENCODE-regions

Figure 9 Examining ENCODE elements on a per individual basis in the normal and cancer genome. a, Breakdown of variants in a single genome (NA12878) by both frequency (common or rare (that is, variants not present in the low-coverage sequencing of 179 individuals in the pilot 1 European panel of the 1000 Genomes project⁵⁵)) and by ENCODE annotation, including proteincoding gene and non-coding elements (GENCODE annotations for proteincoding genes, pseudogenes and other ncRNAs, as well as transcription-factorbinding sites from ChIP-seq data sets, excluding broad annotations such as histone modifications, segmentations and RNA-seq). Annotation status is further subdivided by predicted functional effect, being non-synonymous and missense mutations for protein-coding regions and variants overlapping bound transcription factor motifs for non-coding element annotations. A substantial proportion of variants are annotated as having predicted functional effects in the non-coding category. b, One of several relatively rare occurrences, where Breakdown of variants by frequency

- Common or Rare (that is, variants not present in the low-coverage sequencing of 179 individuals in the pilot 1 European panel of the 1000 Genomes project)
- ENCODE annotation, including proteincoding gene and non-coding elements

Annotation status is further subdivided by predicted functional effect

 non-synonymous and missense mutations for protein-coding regions and variants overlapping bound transcription factor motifs for non-coding element annotations.

A substantial proportion of variants are annotated as having predicted functional effects in the non-coding category.

Major Findings

- I. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.
- 2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, evidence of negative selection; thus, some of them are expected to be functional.
- 3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancerlike features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct functional properties.
- 4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks and transcription factor binding at promoters, indicating that promoter functionality can explain most of the variation in RNA expression.
- 5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this number is at least as large as those that lie in protein-coding genes.
- 6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or transcription factor.

ENCODE and **Disease**

Figure 10 | Comparison of genome-wide-association-study-identified loci with ENCODE data. a, Overlap of lead SNPs in the NHGRI GWAS SNP catalogue (June 2011) with DHSs (left) or transcription-factor-binding sites (right) as red bars compared with various control SNP sets in blue. The control SNP sets are (from left to right): SNPs on the Illumina 2.5M chip as an example of a widely used GWAS SNP typing panel; SNPs from the 1000 Genomes project; SNPs extracted from 24 personal genomes (see personal genome variants track at http://main.genome-browser.bx.psu.edu (ref. 80)), all shown as blue bars. In addition, a further control used 1,000 randomizations from the genotyping SNP panel, matching the SNPs with each NHGRI catalogue SNP for allele frequency and distance to the nearest TSS (light blue bars with bounds at 1.5 times the interquartile range). For both DHSs and transcription-factorbinding regions, a larger proportion of overlaps with GWAS-implicated SNPs is found compared to any of the control sets. b, Aggregate overlap of phenotypes to selected transcription-factor-binding sites (left matrix) or DHSs in selected cell lines (right matrix), with a count of overlaps between the phenotype and the cell line/factor. Values in blue squares pass an empirical *P*-value threshold \approx 0.01 (based on the same analysis of overlaps between randomly chosen, GWAS-matched SNPs and these epigenetic features) and have at least a count of three overlaps. The *P* value for the total number of phenotype-transcription factor associations is <0.001, c, Several SNPs associated with Crohn's disease and other inflammatory diseases that reside in a large gene desert on chromosome 5, along with some epigenetic features indicative of function. The SNP (rs11742570) strongly associated to Crohn's disease overlaps a GATA2 transcription-factor-binding signal determined in HUVECs. This region is also DNase I hypersensitive in HUVECs and T-helper T_H1 and T_H2 cells. An interactive version of this figure is available in the online version of the paper.

- 88% of GWAS SNPs are intronic or intergenic of unknown function
- We found that 12% of these GWAS-SNPs overlap transcriptionfactor-occupied regions whereas 34% overlap DHSs
- GWAS SNPs are particularly enriched in the segmentation classes associated with enhancers and TSSs across several cell types

ENCODE and Cancer

Coding alterations of PDAC are now fairly well established but non-coding mutations (NCMs) largely unexplored

- Developed GECCO to analyze the thousands of somatic mutations observed from hundreds of tumors to find potential drivers of gene expression and pathogenesis
- NCMs are enriched in known and novel pathways
- NCMs correlate with changes in gene expression
- NCMs can demonstrably modulate gene expression
- NCMs correlate with novel clinical outcomes

NCMs are an important mechanism for tumor genome evolution

Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma Feigin, M, Garvin, T et al. (2017) Nature Genetics. doi:10.1038/ng.3861

ENCODE Studies

>5000 Citations for main paper; >>10k for all papers

Summary & Critique

• Summary

 The unprecedented number of functional elements identified in this study provides a valuable resource to the scientific community as well as significantly enhances our understanding of the human genome.

Critique

- Was it correct?
- What is functional?
- What is conservation?
- What was the control?
- What are the tradeoffs of organizing so much funding (\$288M!) around a single project; will other groups successfully use these data?

Comment on "Evidence of Abundant Purifying Selection in Humans for Recently Acquired Regulatory Functions"

Phil Green* and Brent Ewing

Ward and Kellis (Reports, 28 September 2012, p. 1675; published online 5 September 2012) found altered patterns of human polymorphism in biochemically active but non-mammalianconserved genomic regions relative to control regions and interpreted this as due to lineage-specific purifying selection. We find on closer inspection of their data that the polymorphism trends are primarily attributable to mutational variation and technical artifacts rather than selection.

Fig. 1. Variation in 1000 Genomes read depth (totaled over 59 Yoruban individuals) and its impact on DAF. (A) Read-depth distribution for SNPs in neutral control (non-ENCODE) and ENCODE target regions. (B) DAF as a function of read depth, for non-ENCODE SNPs. DAF decreases with increasing depth, due to increasing sensitivity to detect rare variants; the reverse trend at depths above 300 likely reflects the presence of spurious "paralogue-collapse" SNPs .

Science

AAAS

On the Immortality of Television Sets: "Function" in the Human Genome According to the Evolution-Free Gospel of ENCODE

Dan Graur^{1,*}, Yichen Zheng¹, Nicholas Price¹, Ricardo B.R. Azevedo¹, Rebecca A. Zufall¹, and Eran Elhaik²

¹Department of Biology and Biochemistry, University of Houston

²Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health

*Corresponding author: E-mail: dgraur@uh.edu.

Accepted: February 16, 2013

Abstract

A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 – 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these "functional" regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used "causal role" definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as "affirming the consequent," by falling to appreciate the crucial difference between "junk DNA" and "garbage DNA," by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.

Key words: junk DNA, genome functionality, selection, ENCODE project.

The ENCODE project: Missteps overshadowing a success

Two clichés of science journalism have now played out around the ENCODE project. ENCODE's publicity first presented a misleading "all the textbooks

"To clarify what noise means, I propose the **Random Genome Project**. Suppose we put a few million bases of entirely random synthetic DNA into a human cell, and do an ENCODE project on it. Will it be reproducibly transcribed into mRNAlike transcripts, reproducibly bound by DNA-binding proteins, and reproducibly wrapped around histones marked by specific chromatin modifications? I think yes.

A striking feature of genetic regulation is that regulatory factors (proteins or RNAs) generally recognize and bind to small sites, small enough that any given factor will find specific binding sites even in random DNA. Promoters, enhancers, splice sites, poly-A addition sites, and other functional features in the genome all have substantial random occurrence frequencies. These sites are not nonspecific in a random genome. They are specific sequences, albeit randomly occurring and not under selection for any function.

Would biochemical activities in the random genome be regulated under different conditions? For example, would they be cell type-specific? Surely yes, because the regulatory factors themselves (such as transcription factors) are regulated and expressed in specific cell types and conditions."

Bruce Alberts is Editorin-Chief of Science.

The End of "Small Science"?

I AM PROMPTED TO WRITE THIS EDITORIAL BY THE RELEASE OF 30 PAPERS THIS MONTH FROM THE ENCODE Project Consortium. This decade-long project involved an international team of 442 scientists who have compiled what is being called an "encyclopedia of DNA elements," a comprehensive list of functional elements in the human genome. The detailed overview is expected to spur further research on the fundamentals of life, health, and disease. ENCODE exemplifies a "big-science" style of research that continues to sweep the headlines, and the increased efficiency of data production by such projects is impressive. Does this mean that the highly successful "small-science" era of biological research will soon be over? Will government funding increasingly favor big-science projects? I certainly hope that the answer is no.

Each year, the amount of factual information that scientists acquire about cells increases and, stimulated by -omics projects, the compilations of data expand at a tremendous rate. But the grand challenges that remain in attaining a deep understanding of the chemistry of life will require going beyond detailed catalogs. Ensuring a successful future for the biological sciences will require restraint in the growth of large centers and -omics-like projects, so as to provide more financial support for the critical work of innovative small laboratories striving to understand the wonderful complexity of living systems. – Bruce Alberts

. . .

10.1126/science.1230529

EDITORIAI

www.sciencemag.org SCIENCE VOL 337 28 SEPTEMBER 2012 Published by AAAS