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*-seq in 4 short vignettes

RNA-seq Methyl-seq

ChIP-seq Hi-C



Human Evolution

As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five 

other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly 
evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific 
genes that have been lost in each of the other five species under consideration.

Genome analysis of the platypus reveals unique signatures of evolution

(2008) Nature. 453, 175-183 doi:10.1038/nature06936

~5 Mya

~75 Mya

~100 Mya

~160 and 210 Mya



Methyl-seq

Finding the fifth base: Genome-wide sequencing of cytosine methylation
Lister and Ecker (2009) Genome Research. 19: 959-966



Bisulfite Conversion

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications
Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572.

Treating DNA with sodium bisulfite 
will convert unmethylated C to T

• 5-MethyC will be protected and not change, 
so can look for differences when mapping

• Requires great care when analyzing reads, 
since the complementary strand will also be 
converted (G to A)

• Typically analyzed by mapping to a “reduced 
alphabet” where we assume all Cs are 
converted to Ts once on the forward strand 
and once on the reverse



ChIP-seq

Genome-wide mapping of in vivo protein-DNA interactions.
Johnson et al (2007) Science. 316(5830):1497-502



Transcription

https://www.youtube.com/watch?v=WsofH466lqk



Chromatin compaction model

Nucleosome is a basic unit of DNA packaging in eukaryotes

• Consists of a segment of 146bp DNA wound in sequence around eight histone 
protein cores (thread wrapped around a spool) followed by a ~38bp linker

• Under active transcription, nucleosomes appear as “beads-on-a-string”, but are 
more densely packed for less active genes

Nucleosomes form the fundamental repeating units of eukaryotic chromatin

• Used to pack the large eukaryotic genomes into the nucleus while still ensuring 
appropriate access to it (in mammalian cells approximately 2 m of linear DNA have 
to be packed into a nucleus of roughly 10 µm diameter). 



ChIP-seq: Histone Modifications



HI-C: Mapping the folding of DNA

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome
Liberman-Aiden et al. (2009) Science. 326 (5950): 289-293



Putting it all together!

RNA-seq Methyl-seq

ChIP-seq Hi-C
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We need a way to summarize the combinatorial patterns of
multiple histone marks into meaningful biological units 7

We can call peaks, but…



ChromHMM

ChromHMM is software for learning and characterizing chromatin states. 

• ChromHMM can integrate multiple chromatin datasets such as ChIP-seq data of 
various histone modifications to discover de novo the major re-occuring
combinatorial and spatial patterns of marks. 

• ChromHMM is based on a multivariate Hidden Markov Model that explicitly models 
the presence or absence of each chromatin mark. 

• The resulting model can then be used to systematically annotate a genome in one 
or more cell types.

ChromHMM: automating chromatin-state discovery and characterization
Ernst &  Kellis (2012) Nature Methods 9, 215–216. doi:10.1038/nmeth.1906



The Workflow

1. Get ChIP-seq raw reads for different histone
modifications

2. Align the reads to a reference genome
3. Convert aligned reads in bed format
4. Create Binned and Binarized Tracks
5. Train the model
6. Infer the states
7. Interpretation



Create Binned and Binarized Tracks

• ChromHMM quantify the presence or
absence of each mark in bins of fixed size
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ChromHMM : Multivariate Hidden Markov Model  

Binarized
chromatin  
marks. H3K4me3 H3K36me3H3K4me1

H3K27ac H3K4me1

200 base pair interval

Emission distribution is a  
product of independent  
Bernoulli random  
variables

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012
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Binarized
chromatin  
marks. H3K4me3 H3K36me3H3K4me1

H3K27ac H3K4me1

High Probability Chromatin Marks in State
200 base pair interval 1: 4

0.8
K27ac

2: 0.8
K4me1

0.9
H3K4me3

0.9
H3K4me3

0.8
H3K4me1

0.7
H3K4me1

5
Emission distribution is a  
product of independent  
Bernoulli random  
variables

All probabilities  
are learned from  
the data3:

0.9
H3K36me3

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012

6:

H3K4me3 H3K4me1 H3K36me3 H3K36me3 H3K36me3



ChromHMM : Multivariate Hidden Markov Model  
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ChromHMM : Multivariate Hidden Markov Model  
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Transition and Emission Parameters



Enriched functional category

The states predicted by the HMM are statistical entities (#1 – #15)
The states we want are biological entities (Active/Weak/Poised promoter)

Investigate the properties of the statistical entities to label them with biological functions
=> Supervised learning problem J



Chromatin states dynamics across nine cell types

• Single annotation track for each cell type
• Summarize cell-type activity at a glance
• Can study 9-cell activity pattern across
Ernst et al, Nature 2011









ENCODE Data Sets

1,640 data sets total over 147 different cell types 



ENCODE Data Sets

1,640 data sets total over 147 different cell types 



Cell Types
Tier 1 (3 samples, most complete analysis)

– GM12878 (NA12878): a lymphoblastoid cell line produced from the blood of a 
female donor with northern and western European ancestry by EBV transformation. 
It was one of the original HapMap cell lines and has been deeply sequenced using the 
Solexa/Illumina platform.

– K562: an immortalized cell line produced from a female patient with chronic 
myelogenous leukemia (CML). It is a widely used model for cell biology, biochemistry, 
and erythropoiesis. It grows well, is transfectable, and represents the mesoderm 
linage. 

– H1-hESC: H1-human embryonic stem cells

Tier 2 (9 samples, intermediate analysis)
– HeLa-S3: cervical carcinoma cells
– HepG2: hepatoblastoma cells & model system for metabolism disorders 
– HUVECs: Primary (non-transformed) human umbilical vein endothelial cells
– Several other major cell lines from cancer and normal tissues

Tier 3 (135 samples, partial analysis)
– Everything else: many major cell lines and body organs 



Assays

1. RNA transcribed regions
– RNA-seq: General sequencing of RNA
– CAGE: Identify transcription start sites
– RNA-PET: full length RNA analysis and manual annotation

2. Protein-coding regions
– Mass Spectrometry: Sequencing of proteins

3. Transcription-factor-binding sites
– ChIP-seq: 119 of 1,800 known transcription factors
– DNase-seq: open chromatin accessible to Dnase I cutting, “hallmark of regulatory regions”

4. Chromatin structure
– DNase-seq: 13 of more than 60 currently known histone or DNA modifications
– FAIRE-seq: nucleosome-depleted regions
– Histone ChIP-seq: histone proteins pull down and sequencing
– MNase-seq: nucleosome identification

5. DNA methylation sites
– RRBS assay: Methyl-seq at targeted sites near restriction binding sites



Data Analysis Overview





Major Findings

1. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or 
chromatin-associated event in at least one cell type. 

2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, 
evidence of negative selection; thus, some of them are expected to be functional.

3. Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancer-
like features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent 
regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct 
functional properties.

4. It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks 
and transcription factor binding at promoters, indicating that promoter functionality can explain most of the 
variation in RNA expression.

5. Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this 
number is at least as large as those that lie in protein-coding genes.

6. Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding 
functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-
coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or 
transcription factor.
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Summary of ENCODE elements

“Accounting for all these elements, a surprisingly large amount of the human 
genome, 80.4%, is covered by at least one ENCODE-identified element”

•62% transcribed 
•56% enriched for histone marks
•15% open chromatin
•8% TF binding
•19% At least one DHS or TF Chip-seq peak
•4% TF binding site motif
•(Note protein coding genes comprise ~2.94% of the genome)

“Given that the ENCODE project did not assay all cell types, or all 
transcription factors, and in particular has sampled few specialized or 
developmentally restricted cell lineages, these proportions must be 

underestimates of the total amount of functional bases.”



Pervasive Transcription and Regulation

Defining functional DNA elements in the human genome
Kellis et al (2014). PNAS 6131–6138, doi: 10.1073/pnas.1318948111



Redefining the concept of a gene

Landscape of transcription in human cells
Djebali et al. (2012) Nature. doi:10.1038/nature11233
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Impact and Evidence of Selection

For a given ENCODE region, how much 
conservation do we see across 24 
sequenced mammalian genomes?
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Impact and Evidence of Selection



Impact and Evidence of Selection

• From comparative genomic studies, at least 3–8% of bases are under 
purifying (negative) selection, indicating that these bases may potentially be 
functional.

• Most primate-specific sequence is due to retrotransposon activity, but an 
appreciable proportion is non-repetitive primate-specific sequence. Of 
104,343,413 primate-specific bases (excluding repetitive elements), 
67,769,372 (65%) are found within ENCODE-identified elements. 

• … An appreciable proportion of the unconstrained elements are lineage-
specific elements required for organismal function, consistent with long-
standing views of recent evolution, and the remainder are probably ‘neutral’ 
elements that are not currently under selection but may still affect cellular 
or larger scale phenotypes without an effect on fitness. 



Major Findings

1. The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or 
chromatin-associated event in at least one cell type. 

2. Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate, 
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with enhancer-like features and 70,292 regions with promoter-like features, as well as 
hundreds of thousands of quiescent regions. High-resolution analyses further subdivide the 
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variation in RNA expression.
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number is at least as large as those that lie in protein-coding genes.
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coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or 
transcription factor.



Signal Integration

• Use ChromHMM and 
Segway to Summarize 
the individual assays into 
7 functional/regulatory 
states
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Expression Modeling

• Developed predictive models to explore the 
interaction between histone modifications and 
transcription factor binding towards level of 
transcription

• The best models had two components: an initial 
classification component (on/off) and a second 
quantitative model component 

• Together, these correlation models indicate both 
that a limited set of chromatin marks are sufficient 
to ‘explain’ transcription and that a variety of 
transcription factors might have broad roles in 
general transcription levels across many genes

Modeling gene expression using chromatin 
features in various cellular context
Dong et al. (2012) Genome Biology. 12:R53
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Many variants in ENCODE-regions

Breakdown of variants by frequency
• Common or Rare (that is, variants not 

present in the low-coverage sequencing 
of 179 individuals in the pilot 1 European 
panel of the 1000 Genomes project) 

• ENCODE annotation, including protein-
coding gene and non-coding elements 

Annotation status is further subdivided by 
predicted functional effect
• non-synonymous and missense mutations 

for protein-coding regions and variants 
overlapping bound transcription factor 
motifs for non-coding element 
annotations.

A substantial proportion of variants 
are annotated as having predicted 
functional effects in the non-coding 
category.
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ENCODE and Disease

• 88% of GWAS SNPs are 
intronic or intergenic of 
unknown function

• We found that 12% of 
these GWAS-SNPs 
overlap transcription-
factor-occupied regions 
whereas 34% overlap 
DHSs 

• GWAS SNPs are 
particularly enriched in the 
segmentation classes 
associated with enhancers 
and TSSs across several 
cell types



ENCODE and Cancer

Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma 
Feigin, M, Garvin, T et al. (2017) Nature Genetics. doi:10.1038/ng.3861

Coding alterations of PDAC are now fairly well 
established but non-coding mutations (NCMs) 
largely unexplored
• Developed GECCO to analyze the thousands of 

somatic mutations observed from hundreds of 
tumors to find potential drivers of gene expression 
and pathogenesis

• NCMs are enriched in known and novel pathways
• NCMs correlate with changes in gene expression
• NCMs can demonstrably modulate gene expression
• NCMs correlate with novel clinical outcomes

NCMs are an important mechanism for tumor 
genome evolution



ENCODE Studies

>5000 Citations for main paper; >>10k for all papers



Summary & Critique

• Summary
– The unprecedented number of functional elements 

identified in this study provides a valuable resource to 
the scientific community as well as significantly enhances 
our understanding of the human genome.

• Critique
– Was it correct?
– What is functional?
– What is conservation?
– What was the control?
– What are the tradeoffs of organizing so much 

funding ($288M!) around a single project; will 
other groups successfully use these data?







“To clarify what noise means, I propose the Random Genome Project. Suppose 
we put a few million bases of entirely random synthetic DNA into a human cell, 
and do an ENCODE project on it. Will it be reproducibly transcribed into mRNA-
like transcripts, reproducibly bound by DNA-binding proteins, and reproducibly 
wrapped around histones marked by specific chromatin modifications? I think yes.

A striking feature of genetic regulation is that regulatory factors (proteins or RNAs) 
generally recognize and bind to small sites, small enough that any given factor will 
find specific binding sites even in random DNA. Promoters, enhancers, splice 
sites, poly-A addition sites, and other functional features in the genome all have 
substantial random occurrence frequencies. These sites are not nonspecific
in a random genome. They are specific sequences, albeit randomly occurring and 
not under selection for any function.

Would biochemical activities in the random genome be regulated under different 
conditions? For example, would they be cell type-specific? Surely yes, because 
the regulatory factors themselves (such as transcription factors) are regulated and 
expressed in specific cell types and conditions.”



…


