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Assignment 5: Due Mon Mar 23

Assignment 5: Annotations and RNA-seq

Assgrement Dane Wearesayy, March 4, 2070
Dve Date: Weanesday, March 1, 2020 & 15 58pm

Assignment Overview

In this sssgrrmers, you will aralyre gere exprosaion dats and leam how to mate seversl binds of piots In the eswronment of your choce. (e suggest Python or ) Make sure B0 show your
workjcode in your wrteup! As Sefore, any Questions sbout e astigament should be posted to Plazsa

Guestion 1. Gene Ansctation Prefirmisaries (10 pta)
Downicad the annctation of bulid 38 of the human genome froem heee: D sraermbl org/petyrelesse - 87 gt homa_seplenaMoma_saplens GRCHIA AT g g2

o Quettion 1a How Many eVatated (rOten COTWY) QR s e 0N 830N BA0a0me Of I Purman Sinome? (Mt Proten GO Oenes il have “pin” » The 340 COAMA, ) COMLAN The
fobowing tenl: Qene Dty “protein sodng”)

o QUastion 10 WNaL IS The Masmm, mRnimurm, Mean, and standand Gevation of the soan of Droten 000G genes? (M ute 1he genes Wevifed n 1)

o Quetion Tc. What is the mudmum, minimem, mass, and standard deviation In the surmber of exons for Srotein coding genes? [Mint: you thould separately consicler sach acform for sach
pronsin coding gene)

Cuestion 2. Samping Simufation [0 pts)

A typical human coll has ~7%0 000 traracripts, and a typicel Bolikk BNA-g experirment mary mvoive mellions of celle, Cormeguently in an SNASSS axperiment you may start sith rillors of RNA
malscdes, athough your seguencer will only ghwe & few millon to billons of readis. Therefone your ENASEq sxperiment will 3¢ 2 small sampiing of the full composition, We hope the seguences
will Do a reprosentytve sample of the 15tal popuation, But I your sample i wery Unicky or Blased & may Aot fepresant The Sue distrbuton W wil ssplons this conoagt by sampling » smad
swbnat of ranscripts (500 10 SO0 vt of » much anger st (VD 50 Tt you Can evalvate T Diss,

n dara et with 1,000,000 Sres we prowiche an stetraction of RNA-50G Gata whers normalkration has bees performmed and the sumber of Tmes 3 GENe NaMe OCOWTS COMMEONS 1D 196 NumBer
of YANECIQES I T ST ke




Project Proposal: Due Mon Mar 23

Project Proposal

Assignment Date: Mondlay March 9, 2020
Dus Date: Mondary, March 18 2020 @ 11:50pm

Review the Project ideas page
Work S0l Of form @ 108 for your class Project (MO MOre than 3 pecpie 1O & 1eam),

The propossl shondd have the following components;

o Name of your team

o List of team members and emall addresses

« Short tite for your proposal

o 1 paragraph description of what you hope 1o do and how you will do it

o References to 2 to 3 relevant papers

o References/URLs to datasets that you will be studying (Note you can aiso use simulated data)

o Please 8dd 8 note ¥ you need me 1o sponsor you for 8 MARCC account (high RAM, GPUs, many cores, eic)

Submit the proposal as a 1 to 2 page POF on GradeScope (each team member should submit the same POF). After submitting your proposal, we wil
schedule a time %0 discuss your proposal, especially to ensure you have access to the data that you need. The sooner that you submit your proposal,
the sooner we can schedule the meeting. No late days can be used for the project.

Later, you will presentt your project in class during the last week of class. You will 8350 submit 8 written report (5-7 pages) of your project, formatting #s
# Boinformatics article (raro, Methods, Results, Discussion, References), Word and LaTeX termplates are avallable st
mipsfacademic.oup comBicinformatics/pages/submission_online

Please use Pazza to coordnate proposal plans!
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Human Evolution

~75 Mya

~100 Mya

~160 and 210 Mya

As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five
other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly
evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific
genes that have been lost in each of the other five species under consideration.

Genome analysis of the platypus reveals unique signatures of evolution
(2008) Nature. 453, 175-183 d0i:10.1038/nature06936



Methyl-seq
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Finding the fifth base: Genome-wide sequencing of cytosine methylation
Lister and Ecker (2009) Genome Research. 19: 959-966



Bisulfite Conversion
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Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications
Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572.




ChlP-seq

Fravscription Factors

5

Genome-wide mapping of in vivo protein-DNA interactions.
Johnson et al (2007) Science. 316(5830):1497-502



Transcription
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Chromatin compaction model
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Nucleosome is a basic unit of DNA packaging in eukaryotes

« Consists of a segment of 146bp DNA wound in sequence around eight histone
protein cores (thread wrapped around a spool) followed by a ~38bp linker

« Under active transcription, nucleosomes appear as “beads-on-a-string”, but are
more densely packed for less active genes

Nucleosomes form the fundamental repeating units of eukaryotic chromatin

« Used to pack the large eukaryotic genomes into the nucleus while still ensuring
appropriate access to it (in mammalian cells approximately 2 m of linear DNA have
to be packed into a nucleus of roughly 10 ym diameter).



ChlP-seq: Histone Modifications
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Type of Histone
modification HIK4 H3K9 H3K14 HaK27 H3K79 H3K122 H4K20 M2BKS
mono-methylation  activation'™  activation'” activation | activation ' * activation’  activation”)
dG-methylaton  activation repression™ repression”  activation
actl L
tr-mathylaton  activation'™ repression’” repression’ mm repression '
acetylation activation'™ activation’™ activation'” activation''")

« H3K4me3 is enviched in transcriptionally active peomoters. '’ @

* H3XBme3 is found in consttutively repressed Qenes.

» H3K27me is found in lacultatively repressed genes.

« H3K36mea is found in actively transcrided gene bodies.

« H3X9ac & found in actively transcribed promoters.

o H3IK14ac is found in actively transcribed promoters.

« H3K27ac distinguishes active enhancers from poised enhancers.

« H3K122ac is enriched in poised promoters and also found in a dfferent type of putative enhancer that kacks H3K27ac.



HI C: Mapping the folding of DNA

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
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Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome
Liberman-Aiden et al. (2009) Science. 326 (5950): 289-293



Putting it all together!
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We can call peaks, but...

chr6:30,614,231-31,337,674
H2AK5ac [ L.

s R '
H2BK5ac . . g 4 i A |
HZBK'] 2ac ' l . .l i B - ) ‘
H2BK28a¢ i o (26
H2BK120ac . d \ -
H 4 4 : - 4 - -
% ac I A ‘ 4 . ' | . 4 | L
Histone H3K14ac ’ 4y . T—- ) | i ) “
i H3K18ac | | | . P\ » A | i ) | - ‘
acetylation H3K23a0 : > 2 n e
H3K27ac | | WS . A I . A
H3K5680 | l - i “ - ) ‘
H4K5ac | J . d B I A
H4K91ac i - s + 4 4. | Y
H3K4me1 " .
H3K4me3 | | - | i
Histone H3K27me3 4 i
methylation H3K9me3 i
H3K36me3 MR s M ) A A4 Y
H4K20me1
H3K79me1 i i
H3K79me2 i " '
mCG/CG 0] B 1 ARy i ) BY2OMENNe K S Ieam A iy R SOEIEEE b £ L XE 2
RNA (+) JR - i M ‘
RNA (-) i R Widm i) L ) |
PPP1R10M# DHX16M% & % ER3! DDR1 SFTA2 x MUC21 % H(‘G22 - C6orf15 TCF%9 HCG27
PRR3' % MRPS18BIDC1 ® TuBB% DDR1 DPCR1 . MUC22 ¥ PSORS1C1 e
ABCF 1+ PPRTR?& ¥ NRME  FLOT1® #  MIR4640 N TEF19
MIR877 Corf136% . GTF2H4M PSORS1CA
PPP1R10™ d\é,gwsg.s’“ - VARS2 CCHCR1##& .
PQUSE1

PPP1R18NR POUSF1#

We need a way to summarize the combinatorial patterns of
multiple histone marks into meaningful biological units ,



ChromHMM
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ChromHMM is software for learning and characterizing chromatin states.

« ChromHMM can integrate multiple chromatin datasets such as ChlP-seq data of
various histone modifications to discover de novo the major re-occuring
combinatorial and spatial patterns of marks.

« ChromHMM is based on a multivariate Hidden Markov Model that explicitly models
the presence or absence of each chromatin mark.

* The resulting model can then be used to systematically annotate a genome in one
or more cell types.

ChromHMM: automating chromatin-state discovery and characterization
Ernst & Kellis (2012) Nature Methods 9,215-216. doi:10.1038/nmeth.1906



The Workflow

Get ChIP-seq raw reads for different histone
modifications

. Align the reads to a reference genome

Convert aligned reads in bed format
Create Binned and Binarized Tracks
. Train the model

. Infer the states

. Interpretation



Create Binned and Binarized Tracks

e ChromHMM quantify the presence or
absence of each mark in bins of fixed size
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ChromHMM : Multivariate Hidden Markov Model

w

Binarized
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H3K4me1 | H3K4me3 | H3K4me3 | H3K4me1 | |ak3gmes| H3k36me3 H3K36med H3K36me]

H3K27ac \

H3K4me1

200 base pair interval

Emission distribution is a
product of independent
Bernoulli random
variables

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012



ChromHMM : Multivariate Hidden Markov Model
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chromatin
marks.
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Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012




ChromHMM : Multivariate Hidden Markov Model
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Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012




ChromHMM : Multivariate Hidden Markov Model
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Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012




Parameters
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Enriched functional category
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The states predicted by the HMM are statistical entities (#1 — #15)
The states we want are biological entities (Active/\Weak/Poised promoter)

Investigate the properties of the statistical entities to label them with biological functions
=> Supervised learning problem ©



Chromatin states dynamlcs across nine cell types
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Ernst et aI, Nature 2011 Hotorochrom low signal



ARTICLE

An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium®

dol:10.1038/nature 11247

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
mmwdouam(mwoﬂmmwymmaw
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory clements are physically associated with one another and with genes,
providing new insights into the mechanisms of gene regulation. The newly identified clements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this varfation,
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for blomedical research,



An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium*

ARTICLE

954101030/ nature1 1232

The accessible chromatin landscape of
the human genome

ARTICLE

Architecture of the human regulatory
network derived from ENCODE data

d5i:10.1038/ nature 11245

ARTICLE

651:10.1028/natwe11233

Landscape of transcription in human cells

Research

Long noncoding RNAs are rarely translated in two
human cell lines

LETTER

The long-range interaction landscape of gene
promoters

©51110.1038/sature 11279

ARTICLE

024:10.1030/ nature3 1212

An expansive human regulatory lexicon
encoded in transcription factor footprints

Research

Discovery of hundreds of mirtrons in mouse
and human small RNA data

Method

Predicting cell-type-specific gene expression
from regions of open chromatin

Resource

GENCODE: The reference human genome annotation
for The ENCODE Project

Resource

ChlP-seq guidelines and practices of the ENCODE
and modENCODE consortia

Cell type-specific binding patterns reveal that
TCF7L2 can be tethered to the genome by
association with GATA3

Research

Personal and population genomics of human
regulatory variation

Resource

Annotation of functional variation in personal
genomes using RegulomeDB

Functional analysis of transcription factor binding
sites in human promoters

Research

Deep sequencing of subcellular RNA fractions shows
splicing to be predominantly co-transcriptional
in the human genome but inefficient for IncRNAs

Method

Linking disease associations with regulatory
information in the human genome

RESEARCH Open Access

Analysis of variation at transcription factor
binding sites in Drosophila and humans

Method

Combining RT-PCR-seq and RNA-seq to catalog all

genic elements encoded in the human genome

RESEARCH Open Access

Modeling gene expression using chromatin
features in various cellular contexts

RESEARCH Open Access

Classification of human genomic regions based
on experimentally determined binding sites of
more than 100 transcription-related factors
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ENCODE Data Sets
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1,640 data sets total over 147 different cell types



ENCODE Data Sets
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1,640 data sets total over 147 different cell types



Cell Types

Tier |1 (3 samples, most complete analysis)

— GMI12878 (NA12878): a lymphoblastoid cell line produced from the blood of a
female donor with northern and western European ancestry by EBV transformation.
It was one of the original HapMap cell lines and has been deeply sequenced using the
Solexa/lllumina platform.

— K562: an immortalized cell line produced from a female patient with chronic
myelogenous leukemia (CML). It is a widely used model for cell biology, biochemistry,
and erythropoiesis. It grows well, is transfectable, and represents the mesoderm
linage.

— HI-hESC: HIl-human embryonic stem cells

Tier 2 (9 samples, intermediate analysis)
— Hela-S3: cervical carcinoma cells
— HepG2: hepatoblastoma cells & model system for metabolism disorders
— HUVECs: Primary (non-transformed) human umbilical vein endothelial cells

— Several other major cell lines from cancer and normal tissues

Tier 3 (135 samples, partial analysis)

— Everything else: many major cell lines and body organs



Assays

RNA transcribed regions Hypersensitive

Sites
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— RNA-seq: General sequencing of RNA P, . Ry,

| pOlymerase

— CAGE: Identify transcription start sites A / Co
CH
— RNA-PET: full length RNA analysis and manual annotation \\ //
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Transcription-factor-binding sites (rhancers, Nprson
siencers, insulalors)

— ChlP-seq: I 19 of 1,800 known transcription factors
— DNase-seq: open chromatin accessible to Dnase | cutting, “hallmark of regulatory regions”

Chromatin structure
— DNase-seq: |3 of more than 60 currently known histone or DNA modifications
— FAIRE-seq: nucleosome-depleted regions
— Histone ChlP-seq: histone proteins pull down and sequencing

— MNase-seq: nucleosome identification

DNA methylation sites
— RRBS assay: Methyl-seq at targeted sites near restriction binding sites
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Data Analysis Overview

e o e e A :' N —— i —— T —

UO DN D0

P 4 —— | . A - A Ao -

U et G e

pam_et . " S - 1 ) Jl

Uranniibipvms =~

h - ' - o——

Mapped reads from production (Bam)

e TR . =
—& 24— - — B -—
-:.:E g " 1 ; ' ..-‘ e e — p a
=iE ’ ! i I -

Uniform Peak Calling Pnpehoe (SPP, PeakSeq)

Signal Generation

L

(read extension and mappability correction)

Good reproducbity Poor reproduciblity

e

u-wn—u

|DR Processing, QC and Blacklist Filtering

|

Sogmentmion
o e

-
o
—
4
-t
LR
I
=l
|

-\nvw*

L

'_u'.'n'_-_av‘dx:
G - -le
T *.Yxax
¥ A—- LNt~ S

—., Hie TTICC
O0Ga s sCCo
.‘ o ﬂAA'Aw

-

S OR®

Stats, GSC
enrichments, etc.

Motif Uswv&y

— - o ——

-

Signal AQQW“O"
over peaks




ARTICLE

An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium®

dol:10.1038/nature 11247

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
mmwdouam(mwoﬂmmwymmaw
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory clements are physically associated with one another and with genes,
providing new insights into the mechanisms of gene regulation. The newly identified clements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this varfation,
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for blomedical research,



Major Findings 7]

W
The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or
chromatin-associated event in at least one cell type.

Primate-specific elements as well as elements without detectable mammalian constraint show, in aggregate,
evidence of negative selection; thus, some of them are expected to be functional.

Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancer-
like features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent

regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct
functional properties.

It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks

and transcription factor binding at promoters, indicating that promoter functionality can explain most of the
variation in RNA expression.

Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this
number is at least as large as those that lie in protein-coding genes.

Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding
functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-
coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or
transcription factor.
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Summary of ENCODE elements

“Accounting for all these elements, a surprisingly large amount of the human
genome, 80.4%, is covered by at least one ENCODE-identified element”

*62% transcribed

*56% enriched for histone marks

*|5% open chromatin

*8% TF binding

*19% At least one DHS or TF Chip-seq peak
*4% TF binding site motif

*(Note protein coding genes comprise ~2.94% of the genome)

“Given that the ENCODE project did not assay all cell types, or all
transcription factors, and in particular has sampled few specialized or
developmentally restricted cell lineages, these proportions must be

underestimates of the total amount of functional bases.”
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Redefining the concept of a gene
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As a consequence of both the expansion of genic regions by the
discovery of new isoforms and the identification of novel intergenic
transcripts, there has been a marked increase in the number of inter-
genic regions (from 32,481 to 60,250) due to their fragmentationand a
decrease in their lengths (from 14,170 bp to 3,949 bp median length;
Fig. 6). Concordantly, we observed an increased overlap of genic
regions. As the determination of genic regions is currently defined
by the cumulative lengths of the isoforms and their genetic association RS
to phenotypic characteristics, the likely continued reduction in the D :r s ML O
lengths of intergenic regions will steadily lead to the overlap of most e T A .
genes previously assumed to be distinct genetic loci. This supports :ﬁg&?&:ﬁ?ﬂ?&:ﬁgﬁﬁnk ragpions, Hovd guiss creme e
and is consistent with earlier observations of a highly interleaved
transcribed genome'?, but more importantly, prompts the reconsid-
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eration of the definition of a gene. As this is a consistent characteristic . e
of annotated genomes, we would propose that the transcript be con- Ty
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sidered as the basic atomic unit of inheritance. Concomitantly, the
term gene would then denote a higher-order concept intended to
capture all those transcripts (eventually divorced from their genomic
locations) that contribute to a given phenotypic trait. Co-published
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ENCODE-related papers can be explored online via the Nature "; S
ENCODE explorer (http://www.nature.com/ENCODE), a specially 04 AN 0 Y =
designed visualization tool that allows users to access the linked — e ‘.":'-»j_.-j;,;‘ W)
papers and investigate topics that are discussed in multiple papers : e
via thematically organized threads.

Figure 3 | Abundance of gene types in cellular compartments. Two-
dimensional kernel density plots of nuclear over cytosolic enrichment (y axis)

inti 1 all ion in the whole cell extract (x axis), ft tei
Landscape of transcription in human cells Coding, long io-coding and novel genes over all ol ines, Ol penes presat
Djebali et al. (2012) Nature. doi:10.1038/nature| 1233



Major Findings 7]

W
The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or
chromatin-associated event in at least one cell type.

Primate-specific elements as well as elements without detectable mammalian constraint show,
in aggregate, evidence of negative selection; thus, some of them are expected to be functional.

Classifying the genome into seven chromatin states indicates an initial set of 399,124 regions with enhancer-
like features and 70,292 regions with promoter-like features, as well as hundreds of thousands of quiescent
regions. High-resolution analyses further subdivide the genome into thousands of narrow states with distinct
functional properties.

It is possible to correlate quantitatively RNA sequence production and processing with both chromatin marks
and transcription factor binding at promoters, indicating that promoter functionality can explain most of the
variation in RNA expression.

Many non-coding variants in individual genome sequences lie in ENCODE-annotated functional regions; this
number is at least as large as those that lie in protein-coding genes.

Single nucleotide polymorphisms (SNPs) associated with disease by GWAS are enriched within non-coding
functional elements, with a majority residing in or near ENCODE-defined regions that are outside of protein-
coding genes. In many cases, the disease phenotypes can be associated with a specific cell type or
transcription factor.



For a given ENCODE region, how
much conservation do we see across

modern humans
(1000 genomes project)

Impact and Evidence of Selection

Most constrained
=> Most likely functional

)

( \ Average values across
Protein coding sequences

Average values across
UTR sequences

| T T 1 T T 1
-1.0 -0.5 0.0 0.5 1.0 1.5 20

Mammalian conservation f

For a given ENCODE region, how much
conservation do we see across 24
sequenced mammalian genomes?
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;' * From comparative genomic studies, at least 3—8% of bases are under

purifying (negative) selection, indicating that these bases may potentially be
functional.

* Most primate-specific sequence is due to retrotransposon activity, but an .
appreciable proportion is non-repetitive primate-specific sequence. Of

104,343,413 primate-specific bases (excluding repetitive elements),
67,769,372 (65%) are found within ENCODE-identified elements.

* ... An appreciable proportion of the unconstrained elements are lineage-
specific elements required for organismal function, consistent with long-
standing views of recent evolution, and the remainder are probably ‘neutral’
elements that are not currently under selection but may still affect cellular
or larger scale phenotypes without an effect on fitness.
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Many variants in ENCODE-regions

— Protein-cod i
roein-C ‘m. annotation .
Al variants in NA12878 (2,998,008) : Egéggé g:&:iﬁg%;;” Breakdown of variants by frequency
' : «« With predict nctional effect . .

* Common or Rare (that is, variants not
present in the low-coverage sequencing
of 179 individuals in the pilot | European

R jant .
i recicesd panel of the 1000 Genomes project)
B, o lER (1.482) « ENCODE annotation, including protein-
23,22 . .
o coding gene and non-coding elements

Annotation status is further subdivided by

predicted functional effect

* non-synonymous and missense mutations

77, e for protein-coding regions and variants
Common annotated functional effect (27,940 H H H
. s unctional effect (27,940) over.lapplng bound .transcrlptlon factor
| motifs for non-coding element
Figure 9 | Examining ENCODE elements on a per individual basis in the .
normal and cancer genome. a, Breakdown of variants in a single genome annotations.
(NA12878) by both frequency (common or rare (that is, variants not present in
the low-coverage sequencing of 179 individuals in the pilot 1 European panel of
the 1000 Genomes project™)) and by ENCODE annotation, including protein- . . .
coding gene and non-coding elements (GENCODE annotations for protein- A substantial proport,on Of variants
coding genes, pseudogenes and other ncRNAs, as well as transcription-factor- R .
binding sites from ChIP-seq data sets, excluding broad annotations such as are a nnotated as h avi ng pr ed I Cted
histone modifications, segmentations and RNA-seq). Annotation status is . R R
further subdivided by predicted functional effect, being non-synonymous and fu nctional effects in the non-codin g
missense mutations for protein-coding regions and variants overlapping bound
transcription factor motifs for non-coding element annotations. A substantial ca teg or y.
proportion of variants are annotated as having predicted functional effects in

the non-coding category. b, One of several relatively rare occurrences, where
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Figure 10 Comparison of gemome-wide-assoclation-study-identified boct  phenotypes to selected transcription- factor- binding sites (left matrix) or DHSs

with ENCODE data. a Overlap of lead SNPs in the NHGRI GWAS SNP
catalogue (June 2011) with DHSs (left) or transcription-factoe-binding sites
(right) as red baes compared with various control SNP sets in Blwe, The comtrol
SNP scts are (from left to right): SNPs on the [Bamina 2.5M chip as an example
of 3 widely used GWAS SNP typing pand; SNPs from the 1000 Genomes
project; SNPs extracted from 24 personal genomes (see personal genome
variants track at httpo//main genome-browser b pseda (ref. 80)), all shown
as blue bars. In addition, a further control used 1,000 randomizations from the
genotyping SNP panel, matching the SNPs with each NHGRI catalogue SNP
for allele frequency and distance 1o the nearest TSS (light blue bars with bounds
at 1.5 times the Interquartile range). For both DHSs and transcription-factor-
binding regians, a larger proportion of overlaps with GWAS-implicated SNPs
is found compared to any of the comtrols sets, b, Aggregate overlap of

in selected cell lines (right matrix), with 2 count of overlaps between the
phemotype and the cell linetfacior. Vadues in blue squares pass an empirical
P-value threshold =001 (tased on the same analysis of overlaps between
randomly chosen, GWAS-matched SNPs and these epigenctic features) and
have at least 3 count of three overlaps. The P value for the total numsber of
phenotype-transcription factor associations is <0001, ¢, Several SNPs
associated with Crohn's discase and other inflammatory discases that residein a
large gene desert on chromosome 5, along with some epigenetic features
indicative of function. The SNP (rs11742570) strongly associated to Crohn's
disease overlaps a GATA2 transcription-factor-binding signal determined in
HUVECs. This region Is also DNase [ hypersensitive in HUVECs and T-helper
Tyl and T2 cells. An imteractive version of this figure is avadlable in the online
version of the paper.

88% of GWAS SNPs are

intronic or intergenic of
unknown function

We found that 12% of
these GWAS-SNPs
overlap transcription-
factor-occupied regions

whereas 34% overlap
DHSs

GWAS SNPs are
particularly enriched in the
segmentation classes
associated with enhancers
and TSSs across several
cell types




ENCODE and Cancer

[“’,‘;‘J,(",L',,",u'm'“"'m:'f;:" ] Coding alterations of PDAC are now fairly well
established but non-coding mutations (NCM:s)

7) RNA-seq expression calls

| largely unexplored
FunSeq2
( Prioeiize non-coxsng requiakey ,,) * Developed GECCO to analyze the thousands of
| somatic mutations observed from hundreds of
| + tumors to find potential drivers of gene expression
rF:lf.'wch C.RR van.mt1 - For each .C‘RR c’lass\ and PathogeneSiS
ASSOCIEe recurrently Deleming mmsabon
e (RS raes 100 fach
with fanking genes reguialory class
| | : :
oo permutaon st | | noemmeemusen | ¢ NCMs are enriched in known and novel pathways
o ivenity CRRs rates o GC content. . . .
afectng l’k sze, a3 T--r«mc * NCMs correlate with changes in gene expression
Generae tatse ascovery | | Compute expressce | ¢ NICMs can demonstrably modulate gene expression
L rates J  modulabon scores

| | * NCMs correlate with novel clinical outcomes
(,,;2,”,33.32.",’,,’,‘.‘,,.,] NCMs are an important mechanism for tumor

genome evolution

Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma
Feigin, M, Garvin,T et al. (2017) Nature Genetics. doi:10.1038/ng.3861
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Summary & Critique WV//,

Summary

Redefining the Nature
— The unprecedented number of functional elements g
. . . . . Of the uviie
identified in this study provides a valuable resource to )

the scientific community as well as significantly enhances
our understanding of the human genome.

* Critique

— Was it correct?

\

UV W

— What is functional?

V

— What is conservation?

NV

— What was the control?

— What are the tradeoffs of organizing so much
funding ($288M!) around a single project; will
other groups successfully use these data?

~—



Comment on “Evidence of Abundant
Purifying Selection in Humans for
Recently Acquired Regulatory Functions”

Ml Geeen® and Bremt Ewing
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Fig. 1. Varistion in 1000 Genomes read depth (totaled over 59 Yoruban  of read depth, for non-ENCODE SNPs. DAF decreases with increasing depth, due
individuals) and its impact on DAF. (A) Read-depth distribution for SNPs in 10 increasing sensitivity to detect rare variants; the reverse rend at depths above
neutral control (noe-ENCOOE) and ENCODE target reglons, (B) DAF a5 a function 300 likely reflects the presence of spuricus “paralogue-collapse™ SNPs
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On the Immortality of Television Sets: “Function” in the
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Abstract

A recent siew of ENCyclopeda Of DNA Blerments (ENCODE) Consortium publications, specfically the articde signed by all Consortium
members, put forward the idea that more than 80% of the human genome & functional. This claim flies in the face of current
estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%.
Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies
that at least 80 — 10 = 70% of the gename s perfectly imulinerable 1o deleterious mutations, either because no mutation can ever
ocour in these “functional™ regions or because no mutation in these regions can ever be deleteniows. This absurd condusion was
reached through various means, chiefly by employing the seidom used “causal role” definition of biological function and then
applying it inconsistently to different biochemical properties, by committing a logical fallacy known as “ affirming the consequent,” by
faling to appreciate the crucial difference between *junk DNA™ and “garbage DNA, " by using analytical methods that yield biased
rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions mvolved in assigning
functionality to aimost every nudeotide in the human genome. The ENCODE results were predicted by one of its authors 10 neces-
sitate the rewriting of textbooks. We agree, mary textbooks dealng with marketing, mass-media hype, and public relations may well
have 10 be rewrtten.
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The ENCODE project: Missteps
overshadowing a success

Two clichés of science journalism have now played out around the ENCODE
project. ENCODE's publicity first presented a misleading “all the textbooks

“To clarify what noise means, | propose the Random Genome Project. Suppose
we put a few million bases of entirely random synthetic DNA into a human cell,
and do an ENCODE project on it. Will it be reproducibly transcribed infto mRNA-
like transcripts, reproducibly bound by DNA-binding proteins, and reproducibly
wrapped around histones marked by specific chromatin modifications? | think yes.

A striking feature of genetic regulation is that requlatory factors (proteins or RNAs)
generally recognize and bind to small sites, small enough that any given factor will
find specific binding sites even in random DNA. Promoters, enhancers, splice
sites, poly-A addition sites, and other functional features in the genome all have
substantial random occurrence frequencies. These sites are not nonspecific

in a random genome. They are specific sequences, albeit randomly occurring and
not under selection for any function.

Would biochemical activities in the random genome be regulated under different
conditions? For example, would they be cell type-specific? Surely yes, because
the regulatory factors themselves (such as transcription factors) are regulated and
expressed in specific cell types and conditions.”




Bruce Alberts is Editor-
in-Chief of Scaence,

The End of “Small Science”?

| AM PROMPTED TO WRITE THIS EDITORIAL BY THE RELEASE OF 30 PAPERS THIS MONTH FROM THE
ENCODE Project Consortium. This decade-long project involved an international team of 442
scientists who have compiled what is being called an “encyclopedia of DNA elements,” a com-
prehensive list of functional elements in the human genome. The detailed overview is expected
to spur further research on the fundamentals of life, health, and disease. ENCODE exemplifies
a “big-science” style of rescarch that continues to sweep the headlines, and the increased effi-
ciency of data production by such projects is impressive. Does this mean that the highly suc-
cessful “small-science” era of biological research will soon be over? Will government funding
increasingly favor big-science projects? I certainly hope that the answer is no.

Each year, the amount of factual information that scientists acquire about cells increases
and, stimulated by -omics projects, the compilations of data expand at a tremendous rate. But
the grand challenges that remain in attaining a deep understanding of the chemistry of life will
require going beyond detailed catalogs. Ensuring a successful future for the biological sciences
will require restraint in the growth of large centers and -omics—like projects, so as to provide
more financial support for the critical work of innovative small laboratories striving to under-
stand the wonderful complexity of living systems. — Bruce Alberts
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