Lecture 14. Methyl-seq, ChipSeq, and HiC Michael Schatz

March 11, 2019 JHU 601.749: Applied Comparative Genomics

Assignment 5: Due Wed Mar II

Assignment 5: Annotations and RNA-seq

Assignment Date: Wednesday, March 4, 2020 Due Date: Wednesday, March 11, 2020 @ 11:59pm

Assignment Overview

In this assignment, you will analyze gene expression data and learn how to make several kinds of plots in the environment of your choice. (We suggest Python or R.) Make sure to show your work/code in your writeup! As before, any questions about the assignment should be posted to Plazza.

Question 1. Gene Annotation Preliminaries [10 pts]

Download the annotation of build 38 of the human genome from here: ftp://ftp.ensembi.org/pub/release-87/gtl/homo_sapiens/Homo_sapiens.GRCh38.87.gtf.gz

- Question 1a. How many annotated protein coding genes are on each autosome of the human genome? [Hint: Protein coding genes will have "gene" in the 3rd column, and contain the following text: gene, biotype "protein, coding"]
- Question 1b. What is the maximum, minimum, mean, and standard deviation of the span of protein coding genes? [Hint: use the genes identified in 1b]
- Question 1c. What is the maximum, minimum, mean, and standard deviation in the number of exons for protein coding genes? (Hint: you should separately consider each isoform for each protein coding gene)

Question 2. Sampling Simulation [10 pts]

A typical human cell has -250,000 transcripts, and a typical bulk RNA-seq experiment may involve millions of cells. Consequently in an RNAseq experiment you may start with trillions of RNA molecules, although your sequencer will only give a few million to billions of reads. Therefore your RNAseq experiment will be a small sampling of the full composition. We hope the sequences will be a representative sample of the total population, but if your sample is very unlucky or biased it may not represent the true distribution. We will explore this concept by sampling a small subset of transcripts (500 to 50000) out of a much larger set (1M) so that you can evaluate this bias.

In data1.bit with 1,000,000 lines we provide an abstraction of RNA-seq data where normalization has been performed and the number of times a gene name occurs corresponds to the number of transcripts in the sample.

Project Proposal

Project Proposal

Assignment Date: Monday March 9, 2020 Due Date: Monday, March 16 2020 @ 11:59pm

Review the Project Ideas page

Work solo or form a team for your class project (no more than 3 people to a team).

The proposal should have the following components:

- · Name of your team
- List of team members and email addresses
- · Short title for your proposal
- 1 paragraph description of what you hope to do and how you will do it
- References to 2 to 3 relevant papers
- · References/URLs to datasets that you will be studying (Note you can also use simulated data)
- · Please add a note if you need me to sponsor you for a MARCC account (high RAM, GPUs, many cores, etc)

Submit the proposal as a 1 to 2 page PDF on GradeScope (each team member should submit the same PDF). After submitting your proposal, we will schedule a time to discuss your proposal, especially to ensure you have access to the data that you need. The sconer that you submit your proposal, the sconer we can schedule the meeting. No late days can be used for the project.

Later, you will present your project in class during the last week of class. You will also submit a written report (5-7 pages) of your project, formatting as a Bioinformatics article (Intro, Methods, Results, Discussion, References). Word and LaTeX templates are available at https://academic.oup.com/bioinformatics/pages/submission_online

Please use Plazza to coordinate proposal plans!

RNA-seq

Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Sørlie et al (2001) PNAS. 98(19):10869-74.

RNA-seq Challenges

Challenge I: Eukaryotic genes are spliced

Solution: Use a spliced aligner, and assemble isoforms

TopHat: discovering spliced junctions with RNA-Seq.

Trapnell et al (2009) Bioinformatics. 25:0 1105-1111

Challenge 2: Read Count != Transcript abundance Solution: Infer underlying abundances (e.g. TPM)

Transcript assembly and quantification by RNA-seq Trapnell et al (2010) *Nat. Biotech.* 25(5): 511-515

Challenge 3: Transcript abundances are stochastic

Solution: Replicates, replicates, and more replicates

RNA-seq differential expression studies: more sequence or more replication? Liu et al (2013) *Bioinformatics*. doi:10.1093/bioinformatics/btt688

Multi-mapping? Isoform ambiguity? Expectation Maximization to the Rescue

The gene has three isoforms (red, green, blue) of the same length. Initially every isoform is assigned the same abundance (red=1/3, green=1/3, blue=1/3)

There are five reads (a,b,c,d,e) mapping to the gene. Read a maps to all three isoforms, read d only to red, and the other three (reads b,c,e) to each of the three pairs of isoforms.

During the expectation (E) step reads are proportionately assigned to transcripts according to the (current) isoform abundances (RGB): a=(.33,.33,.33), b=(0,.5,.5), c=(.5,.5), d=(1,0,0), e=(.5,.5,0)

Next, during the maximization (M) step isoform abundances are recalculated from the proportionately assigned read counts:

red: 0.47 = (0.33 + 0.5 + 1 + 0.5)/(2.33 + 1.33 + 1.33)blue: 0.27 = (0.33 + 0.5 + 0.5)/(2.33 + 1.33 + 1.33)green: 0.27 = (0.33 + 0.5 + 0.5)/(2.33 + 1.33 + 1.33)

Repeat until convergence!

Models for transcript quantification from RNA-seq Pachter, L (2011) arXiv. 1104.3889 [q-bio.GN]

Why Genes?

- Humans and chimpanzees shared a common ancestor ~5-7 million years ago (Mya)
- Single-nucleotide substitutions occur at a mean rate of 1.23% but ~4% overall rate of mutation: comprising ~35 million single nucleotide differences and ~90 Mb of insertions and deletions
- Orthologous proteins in human and chimpanzee are extremely similar, with ~29% being identical and the typical orthologue differing by only two amino acids, one per lineage

Initial sequence of the chimpanzee genome and comparison with the human genome (2005) *Nature 437, 69-87 doi:10.1038/nature04072*

"In the roughly 75 million years since the divergence of the human and mouse lineages, the process of evolution has altered their genome sequences and caused them to diverge by *nearly one substitution for every two nucleotides*"

"The mouse and human genomes each seem to contain about 30,000 protein-coding genes. These refined estimates have been derived from both new evidence-based analyses that produce larger and more complete sets of gene predictions, and new de novo gene predictions that do not rely on previous evidence of transcription or homology. The proportion of mouse genes with a single identifiable orthologue in the human genome seems to be approximately 80%. *The proportion of mouse genes without any homologue currently detectable in the human genome (and vice versa) seems to be less than 1%.*"

Initial sequencing and comparative analysis of the mouse genome Chinwalla et al (2002) *Nature.* 420, 520-562 doi:10.1038/nature01262

"We generated gene predictions for the dog genome using an evidence-based method (see Supplementary Information). The resulting collection contains **19,300 dog gene predictions, with nearly all being clear homologues of known human genes**. The dog gene count is substantially lower than the ~22,000-gene models in the current human gene catalogue (EnsEMBL build 26). For many predicted human genes, we find no convincing evidence of a corresponding dog gene. Much of the excess in the human gene count is attributable **to spurious gene predictions in the human genome**"

Genome sequence, comparative analysis and haplotype structure of the domestic dog Lindblad-Toh et al (2005) Nature. 438, 803-819 doi:10.1038/nature04338

As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific genes that have been lost in each of the other five species under consideration.

Genome analysis of the platypus reveals unique signatures of evolution (2008) Nature. 453, 175-183 doi:10.1038/nature06936

Animal Evolution

Digits and fin rays share common developmental histories Nakamura et al (2016) *Nature.* 537, 225–228. doi:10.1038/nature19322

More Information

"Anything found to be true of E. coli must also be true of elephants"

-Jacques Monod

*-seq in 4 short vignettes

Finding the fifth base: Genome-wide sequencing of cytosine methylation Lister and Ecker (2009) *Genome Research*. 19: 959-966

Epigenetic Modifications to DNA

5-mC

5-hmC

5-fC

5-caC

4-mC

8-oxoA

Methylation of CpG Islands

Typical mammalian DNA methylation landscape

CpG islands are (usually) defined as regions with

- I) a length greater than 200bp,
- 2) a G+C content greater than 50%,
- 3) a ratio of observed to expected CpG greater than 0.6

Methylation in promoter regions correlates negatively with gene expression.

- CpG-dense promoters of actively transcribed genes are never methylated
- In mouse and human, around 60-70% of genes have a CpG island in their promoter region and most of these CpG islands remain unmethylated independently of the transcriptional activity of the gene
- Methylation of DNA itself may physically impede the binding of transcriptional proteins to the gene
- Methylated DNA may be bound by proteins known as methyl-CpG-binding domain proteins (MBDs) that can modify histones, thereby forming compact, inactive chromatin, termed heterochromatin.

The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers

Frank Lyko¹⁹, Sylvain Foret²⁹, Robert Kucharski³, Stephan Wolf⁴, Cassandra Falckenhayn¹, Ryszard Maleszka³*

1 Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany, 2 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia, 3 Research School of Biology, the Australian National University, Canberra, Australia, 4 Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany

Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm Ong-Abdullah, et al (2015) *Nature. doi:10.1038/nature15365*

Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm Ong-Abdullah, et al (2015) *Nature. doi:10.1038/nature15365*

Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production...Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.

Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm Ong-Abdullah, et al (2015) *Nature. doi:10.1038/nature15365*

Hypomethylation distinguishes genes of some human cancers from their normal counterparts

Andrew P. Feinberg & Bert Vogelstein

Cell Structure and Function Laboratory, The Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

It has been suggested that cancer represents an alteration in DNA, heritable by progeny cells, that leads to abnormally regulated expression of normal cellular genes; DNA alterations such as mutations1.2, rearrangements3-5 and changes in methylation^{6.4} have been proposed to have such a role. Because of increasing evidence that DNA methylation is important in gene expression (for review see refs 7, 9-11), several investigators have studied DNA methylation in animal tumours, transformed cells and leukaemia cells in culture^{8,12-30}. The results of these studies have varied; depending on the techniques and systems used, an increase¹²⁻¹⁹, decrease²⁰⁻²⁴, or no change²⁸⁻²⁹ in the degree of methylation has been reported. To our knowledge, however, primary human tumour tissues have not been used in such studies. We have now examined DNA methylation in human cancer with three considerations in mind: (1) the methylation pattern of specific genes, rather than total levels of methylation, was determined; (2) human cancers and adjacent analogous normal tissues, unconditioned by culture media, were analysed; and (3) the cancers were taken from patients who had received neither radiation nor chemotherapy. In four of five patients studied, representing two histological types of cancer, substantial hypomethylation was found in genes of cancer cells compared with their normal counterparts. This hypomethylation was progressive in a metastasis from one of the patients.

and (3) HpaII and HhaI cleavage sites should be present in the regions of the genes.

The first cancer studied was a grade D (ref. 43), moderately well differentiated adenocarcinoma of the colon from a 67-yrold male. Tissue was obtained from the cancer itself and also from colonic mucosa stripped from the colon at a site just outside the histologically proven tumour margin. Figure 1 shows the pattern of methylation of the studied genes. Before digestion with restriction enzymes, all DNA samples used in the study had a size >25,000 base pairs (bp). After HpaII cleavage, hybridization with a probe made from a cDNA clone of human growth hormone (HGH) showed that significantly more of the DNA was digested to low-molecular weight fragments in DNA from the cancer (labelled C in Fig. 1) than in DNA from the normal colonic mucosa (labelled N). In the hybridization conditions used, the HGH probe detected the human growth hormone genes as well as the related chorionic somatotropin

Table 1	Quantitation (of methylation	of sp	ecific .	genes	in	human	cancers.	and
		djacent analog	ous no	ormal t	issues				

Patient	Carcinoma	Probe	Enzyme	% Hypomethylated fragments			
				N	C	м	
1	Colon	HGH	∫ Hpa II	<10	35	_	
			LHhal	<10	39	-	
		y-Globin	f Hpa 11	<10	52	-	
			Lithel	<10	39		
	Colon	a-Globia	f Hpa II	<10	<10	-	
			Ulthal	<10	<10		
1.00		HGH	€ HpaII	<10	76	-	
-			LHhal	<10	85	-	
		y-Globia	∫ Hpa II	<10	58	-	
			LHhal	<10	23	-	
	Colon	a-Globin	∫ HpaII	<10	<10	-	
			Hhal	<10	<10		
- Q		HGH	fHpaII.	<10	41		
3			UNhal	<10	38	-	
		y-Globin	\$Hpall	<10	50	-	
			Libert	~10	22		

Bisulfite Conversion

Treating DNA with sodium bisulfite will convert <u>un</u>methylated C to T

- 5-MethylC will be protected and not change, so can look for differences when mapping
- Requires great care when analyzing reads, since the complementary strand will also be converted (G to A)
- Typically analyzed by mapping to a "reduced alphabet" where we assume all Cs are converted to Ts once on the forward strand and once on the reverse

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications Krueger and Andrews (2010) *Bioinformatics*. 27 (11): 1571-1572.

Bisulfite Conversion

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications Krueger and Andrews (2010) *Bioinformatics*. 27 (11): 1571-1572.

Methylation changes in cancer detected by Nanopore Sequencing

Comparison of bisulfite sequencing and nanopore-based R7.3 data in reduced representation data sets from cancer and normal cells. (a) Raw data (points) and smoothed data (lines) for methylation, as determined by bisulfite sequencing (top) and nanopore-based sequencing using an R7.3 pore (bottom), in a genomic region from the human mammary epithelial cell line MCF10A (green) and metastatic mammary epithelial cell line MDA-MB-231 (orange). (b) Same region as in a but with individual nanopore reads plotted separately. Each CpG that can be called is a point. Blue indicates methylated; red indicates unmethylated.

Detecting DNA cytosine methylation using nanopore sequencing

Simpson, Workman, Zuzarte, David, Dursi, Timp (2017) Nature Methods. doi:10.1038/nmeth.4184

ChIP-seq

Genome-wide mapping of in vivo protein-DNA interactions.

Johnson et al (2007) Science. 316(5830):1497-502

Transcription

https://www.youtube.com/watch?v=WsofH466lqk

Transcription Factors

A transcription factor (or sequence-specific DNAbinding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence.

- Transcription factors work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of RNA polymerase to specific genes.
- A defining feature of transcription factors is that they contain at least one DNA-binding domain (DBD)
- Figure (a) Eight known genomic binding sites in three S. cerevisiae genes. (b) Degenerate consensus sequence. (c,d) Frequencies of nucleotides at each position. (e) Sequence logo (f) Energy normalized logo using relative entropy to adjust for low GC content in S. cerevisiae.

а	HEM13	CCCATTGTTCTC
	HEM13	TTTCTGGTTCTC
	HEM13	TCAATTGTTTAG
	ANB1	CTCATTGTTGTC
	ANB1	TCCATTGTTCTC
	ANB1	CCTATTGTTCTC
	ANB1	TCCATTGTTCGT
	ROX1	CCAATTGTTTTG
b		YCHATTGTTCTC
с	A	002700000010
	C	464100000505
	G	000001800112
	т	422087088261
d	0.8 0.0 0.0 0.0	
e	2.0 뾾 1.0 0.0	
f	2.0 뽎 1.0 0.0	

What are DNA sequence motifs? D'haeseleer (2006) Nature Biotechnology 24, 423 – 425 doi:10.1038/nbt0406-423

Transcription Factors Database

JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles Anthony Mathelier (2014) Nucleic Acids Res. 42 (D1): D142-D147. DOI: https://doi.org/10.1093/nar/gkt997

SRY:The master switch in mammalian sex determination Kashimada and Koopman (2010) Development 137: 3921-3930; doi: 10.1242/dev.048983

SRY:The master switch in mammalian sex determination Kashimada and Koopman (2010) Development 137: 3921-3930; doi: 10.1242/dev.048983

Enhancers

Enhancers are genomic regions that contain binding sites for transcription factors (TFs) and that can upregulate (enhance) the transcription of a target gene.

- Enhancers can be located at any distance from their target genes (up to ~1Mbp)
- In a given tissue, active enhancers (Enhancer A in part b or Enhancer B in part c) are bound by activating TFs and are brought into proximity of their respective target promoters by looping
- Active and inactive gene regulatory elements are marked by various biochemical features
- Complex patterns of gene expression result from the additive action of different enhancers with cell-type- or tissuespecific activities

Transcriptional enhancers: from properties to genome-wide predictions Shlyueva et al (2014) *Nature Reviews Genetics* 15, 272–286

Insulators

Insulators are DNA sequence elements that prevent "inappropriate interactions" between adjacent chromatin domains.

- One type of insulator establishes domains that separate enhancers and promoters to block their interaction,
- Second type creates a barrier against the spread of heterochromatin.

Insulators: exploiting transcriptional and epigenetic mechanisms Gaszner & Felsenfeld (2006) *Nature Reviews Genetics* 7, 703-713. doi:10.1038/nrg1925

ChIP-seq:TF Binding

Goals:

- Where are transcription factors and other proteins binding to the DNA?
- How strongly are they binding?
- Do the protein binding patterns change over developmental stages or when the cells are stressed?

Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data Valouev et al (2008) *Nature Methods.* 5, 829 - 834

Chromatin compaction model

Nucleosome is a basic unit of DNA packaging in eukaryotes

- Consists of a segment of 146bp DNA wound in sequence around eight histone protein cores (thread wrapped around a spool) followed by a ~38bp linker
- Under active transcription, nucleosomes appear as "beads-on-a-string", but are more densely packed for less active genes

Nucleosomes form the fundamental repeating units of eukaryotic chromatin

 Used to pack the large eukaryotic genomes into the nucleus while still ensuring appropriate access to it (in mammalian cells approximately 2 m of linear DNA have to be packed into a nucleus of roughly 10 µm diameter).

ChIP-seq: Histone Modifications

The common nomenclature of histone modifications is:

- The name of the histone (e.g., H3)
- The single-letter amino acid abbreviation (e.g., K for Lysine) and the amino acid position in the protein
- The type of modification (Me: methyl, P: phosphate, Ac: acetyl, Ub: ubiquitin)
- The number of modifications (only Me is known to occur in more than one copy per residue. 1, 2 or 3 is mono-, di- or tri-methylation)

So H3K4me1 denotes the monomethylation of the 4th residue (a lysine) from the start (i.e., the N-terminal) of the H3 protein.

ChIP-seq: Histone Modifications

Type of	Histone							
modification	H3K4	НЗК9	H3K14	H3K27	H3K79	H3K122	H4K20	H2BK5
mono-methylation	activation ^[6]	activation ^[7]		activation ^[7]	activation[7][8]		activation ^[7]	activation ^[7]
di-methylation	activation	repression ^[3]		repression ^[3]	activation ^[8]			
tri-methylation	activation ^[9]	repression ^[7]		repression ^[7]	activation, ^[0] repression ^[7]			repression ^[3]
acetylation		activation ^[9]	activation ^[9]	activation ^[10]		activation ^[11]		

- H3K4me3 is enriched in transcriptionally active promoters.^[12]
- H3K9me3 is found in constitutively repressed genes.
- H3K27me is found in facultatively repressed genes.^[7]
- H3K36me3 is found in actively transcribed gene bodies.
- H3K9ac is found in actively transcribed promoters.
- H3K14ac is found in actively transcribed promoters.
- H3K27ac distinguishes active enhancers from poised enhancers.
- H3K122ac is enriched in poised promoters and also found in a different type of putative enhancer that lacks H3K27ac.

General Flow of ChIP-seq Analysis

PeakSeq

PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls

Rozowsky et al (2009) Nature Biotechnology 27, 66 - 75

Basset

Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks Kelley et al. (2016) Genome Research doi: 10.1101/gr.200535.115

Related Assays

d FAIRE-seq a DNA-binding protein ChIP-seq b Histone modification ChIP-seq c DNase-seq Crosslink proteins and DNA Crosslink proteins and DNA Crosslink proteins and DNA Exonuclease Sample fragmentation Sample fragmentation DNasel Sample fragmentation Sonication MNase digestion * Sonication Sample fragmentation * Endonuclease (ChIP-exo) DNasel digestion Phenol-chloroform extraction of DNA Immunoprecipitate and Immunoprecipitate and then purify DNA then purify DNA Add biotinylated linkers and extract pT7-AA_AA TT_TT -AA_AA-pT7 ····· Amplify, if few cells Amplify, if few cells + LinDA + Nano-ChIP-seq LinDA DNA library creation and sequencing DNA library creation and sequencing DNA library creation and sequencing DNA library creation and sequencing

ChIP-seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions Furey (2012) *Nature Reviews Genetics.* 13, 840-852

HI-C: Mapping the folding of DNA

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome Liberman-Aiden et al. (2009) *Science*. 326 (5950): 289-293

HI-C: Mapping the folding of DNA

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome Liberman-Aiden et al. (2009) *Science*. 326 (5950): 289-293

Gene Regulation in 3-dimensions

Fig 6. A model for how Xist exploits and alters three-dimensional genome architecture to spread across the X chromosome.

The Xist IncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome Engreitz et al. (2013) Science. 341 (6147)

Genome compartments & TADs

Mammalian genomes have a pattern of interactions that can be approximated by two compartments called A and B

- alternate along chromosomes and have a characteristic size of ~5 Mb each.
- A compartments (orange) preferentially interact with other A compartments; B compartments (blue) associate with other B compartments.
- A compartments are largely euchromatic, transcriptionally active regions.

Topologically associating domains (TADs)

- TADs are smaller (~400–500 kb)
- Can be active or inactive, and adjacent TADs are not necessarily of opposite chromatin status.
- TADs are hard-wired features of chromosomes, and groups of adjacent TADs can organize in A and B compartments

Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data Dekker et al. (2013) *Nature Reviews Genetics 14, 390–403*

Nature Reviews | Cenetics

"Lamina-Associated Domains are the B compartment"

THE CELL, Fourth Edition, Figure 9.1 (Part 1) © 2008 ASM Press and Sinauer Association, Inc.

Chromosome Conformation Paints Reveal the Role of Lamina Association in Genome Organization and Regulation Luperchio et al. (2017) bioRxiv. doi: https://doi.org/10.1101/122226

Scaffolding with Hi-C

Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome Bickhart et al (2017) Nature Genetics (2017) doi:10.1038/ng.3802

Putting it all together!

