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The advantages of SMRT sequencing
Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405



Oxford Nanopore Technologies (ONT)



Nanopore Sequencing
Sequences DNA/RNA by measuring changes in ionic 
current as nucleotide strand passes through a pore

nanoporetech.com/applications/dna-nanopore-sequencinghttps://www.youtube.com/watch?v=CE4dW64x3Ts

https://www.youtube.com/watch%3Fv=CE4dW64x3Ts


Oxford Nanopore MinION
• Thumb drive sized sequencer 

powered over USB
• Contains 512 channels
• Four pores per channel, 

only one pore active at a 
time

• Early access began in 2014
• Officially released in 2015 

(the same year I met Mike!)



Nanopore Read Lengths

Nanopore sequencing and assembly of a human genome with ultra-long reads
Jain et al. (2018) Nature Biotechnology: https://www.nature.com/articles/nbt.4060

A typical MinION run produces ~10Gbp worth of reads 
of with a mean read length of ~10Kbp
• “Ultra-long” runs produce many reads > 100Kbp, with the longest read 

ever observed ~2.3Mbp

https://www.nature.com/articles/nbt.4060


Nanopore Read Quality
ONT reads typically 
have a mean error 
rate of ~10%

Predominantly indels

TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG
||||||||||||||||||||||||| ||||||| |||||||||||| |||
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
| |||||| |||| ||  ||||||||||||||||||||||||||||||||
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
| ||||||| |||||||||||||| || ||    |||||||||| |||||
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA

-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
||||||   ||     |||||||| || |||||||||||||| || |||
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA

ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT

TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA

ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG
||||||| |||||||||  |||||| ||||| ||||||||||||||||||
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

London Calling 2019 Keynote



Single Molecule Sequences



“Corrective Lens” for Sequencing



“Corrective Lens” for Sequencing

If you are starting with 10% error, how much can we improve?



Consensus Accuracy and Coverage

Coverage can overcome random errors
• Dashed: error model from binomial sampling; Solid: observed accuracy
• Unfortunately, ONT has some non-random errors (mainly homopolymers)

coverage



ONT Assembly Accuracy
Assemblies are quite contiguous, but percent 
identity maxes out ~99%
• Depends on organism - basecallers are mainly trained on human
• Polishing from other technologies necessary for reference-quality

Benchmarking of long-read assemblers for prokaryote whole genome sequencing
Wick and Holt (2019) F1000 Research: https://doi.org/10.12688/f1000research.21782.1



Nanopore Basecalling
Raw Signal

Translation of raw signal 
into basepairs



Nanopore Basecalling
Raw Signal

Events

Translation of raw signal 
into basepairs

Early basecallers began by 
estimating k-mer boundaries 
using “events”, which were 
then input to an HMM

Modern basecalers use 
neural networks directly 
on raw signal



Nanopore Basecalling
Raw Signal

Events

0
TCCA
AGCA
GTCT
GATT

1
CCAT
TGGC
ATTA
ATTG

2
CATG
TTAC
ACGT
GTCT

3
TACA
TCCA
GACG
ACGG

DNA Base-Calling from a Nanopore Using a Viterbi Algorithm 
Timp et al. (2012) Biophysical Journal

Possible k-mers

ONT releases k-mer models 
with expected current 
distribution of every k-mer 

(Based on probability of event matches)



Nanopore Basecalling
Raw Signal

Events

0
TCCA
AGCA
GTCT
GATT

1
CCAT
TGGC
ATTA
ATTG

2
CATG
TTAC
ACGT
GTCT

3
TACA
TCCA
GACG
ACGG

DNA Base-Calling from a Nanopore Using a Viterbi Algorithm 
Timp et al. (2012) Biophysical Journal

Possible k-mers

Certain k-mers can be 
eliminated based on 
possible transitions



Nanopore Basecalling
Raw Signal

Events

0
TCCA
AGCA
GTCT
GATT

1
CCAT
TGGC
ATTA
ATTG

2
CATG
TTAC
ACGT
GTCT

3
TACA
TCCA
GACG
ACGG

GATTACA

Possible k-mers

“DNA Base-Calling from a Nanopore Using a Viterbi Algorithm”
Timp et al. (2012) Biophysical Journal

Final sequence determined 
by most probable k-mers



From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9

Basecaller/Pore Timeline
Development of both pore chemistry and basecalling 
algorithms is responsible for improvement in accuracy



From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9

Basecaller/Pore Timeline
Development of both pore chemistry and basecalling 
algorithms is responsible for improvement in accuracy

London Calling 
2019 Keynote



New Pore Chemistries

Standard pore 
chemistry

“R9”

ONT recently released “R10” pore chemisity
● Two bottlenecks where nucleotides affect current
● Spans longer homopolymers
● May still have non-random errors, but profile is different

From 2018 London Calling Keynote
https://vimeo.com/272526835

https://vimeo.com/272526835


More Throughput

MinION
Quick Mobile 
Sequencing

$1k / instrument
5-8 GB / day

PromethION
High Throughput Desktop 

Sequencer
$75k / instrument
>>1000GB / day



MinION + GridION PromethION

74GB

Part of collaboration 
between JHU and CSHL 
to sequence 100 tomato 
genomes in 100 days

Nanopore Performance at CSHL
Sara Goodwin



MinION + GridION PromethION

74GB

130GB

Nanopore Performance at CSHL
Sara Goodwin



Telomere-to-Telomere (T2T)
T2T consortium aims to finish the human genome
• Many gaps still exist, particularly around centromeres
• Uses ultra-long ONT reads, in addition to PacBio HiFi and other tech
• Finished chrX, close to finishing chr8, only 22 more to go

Karen Miga, London Calling 2019

Telomere-to-telomere assembly of a complete human X chromosome
Miga et al. (2019) BioRxiv. https://doi.org/10.1101/735928



DNA Modification Detection
ONT can detect methylation from raw signal
• Or any other modification that changes ionic current

Piercing the dark matter: bioinformatics of long-range sequencing and mapping
Sedlazeck et al. (2018) Nature Reviews Genetics. 19:329



Nanopore Direct RNA-seq

https://www.rna-seqblog.com/focus-on-rna-secondary-structure/

ONT can sequence RNA molecules directly

cDNA sequencing erases modifications and structure

Direct RNA-seq has potential to read both



Long-Read RNA-seq Assembly
Both direct and cDNA ONT RNA-seq produce 
some transcript fragments
• I helped develop StringTie2, which applies short-read 

transcriptome assembly methods to long-reads



VolTRAX - Library Prep (+ sequencing?)



Extremely Portable Sequencing!



Ebola Surveillance



Ebola Surveillance



Ebola Surveillance



COVID-19 (    ) Surveillance

https://nanoporetech.com/about-us/news/novel-coronavirus-ncov-2019covid-19-information-and-updates

https://nanoporetech.com/about-us/news/novel-coronavirus-ncov-2019covid-19-information-and-updates


Less Throughput 

https://nanoporetech.com/products

(coming “soon”)

https://nanoporetech.com/products


Targeted Sequencing
Often you’re only interested in certain sequences
• Can be challenging to reach sufficient coverage with low yield
• For example: pathogen DNA enrichment or targeting genes

PCR doesn’t work work well for ONT sequencing
● Limits read length and erases epigenetc modifications



CIRSPR/Cas9 Enrichment
Uses Cas9 to cut DNA around target region, 
then binds adapters to phosphorylated ends CRISPR/Cas9 Enrichment



ReadUntil Sequencing
ONT devices can selectively eject reads in real-time

Nanopore Sequencing Nanopore Sequencing with ReadUntil

Enables targeted sequencing without addition sample prep
• Requires rapid real-time read identification

MinION has up to 512 active channels, each reading 450 bp/sec
• Actual number of active channels is variable



ReadUntil Sequencing

Target Enric
hment

Depletion

Reference On-Target

Reference Off-TargetOff-target

Off-target



Utility for Nanopore Current ALignment to Large Expanses of 
DNA

A novel streaming algorithm 
which maps raw nanopore signal 
as it is being sequenced
● Can map reads from all active MinION 

channels to reference tens of 
megabases in size

● Uses the mapping results to make 
ReadUntil decisions

github.com/skovaka/UNCALLED

AKA UNCALLED



UNCALLED Signal Processing
● Stretches of similar signal are 

collapsed into events
○ Averages out noise and reduces 

amount of signal to process

○ Ideally each event represents a 
single k-mer, but many errors occur 
(50% stays, 1% skips)

● Probability of events matching 
each k-mer is then computed
○ Expected current for each k-mer 

modeled by normal distribution

○ ONT releases 6-mer models 
(I use 5-mers)



FM Index
• Used by many aligners such as 

BWA, Bowtie, and HISAT
• UNCALLED uses BWA’s FM index

– Interchangeable - started with my own 
implementation



FM Index Search 

Size of range = number of possible alignments



FM Index Search w/ Ambiguity



FM Index Search w/ Ambiguity



UNCALLED Algorithm

TGCAAGCATGCT

TGCAAGCATGCT

TGCAAGCATGCT

Conceptually all possible paths through the 
FM index form a forest of trees
Traversing trees is cache-inefficient. Instead 
every path is stored in a fixed-length buffer
● Stores cumulative log probabilities/event types
● Whole buffer must be copied when a path splits

Once a buffer is full:
● Report a seed alignment
● Erase oldest event, making room for next
● Buffers keep rolling across read until no possible 

extension exists



Mapping Reads to E. coli
Mapped 100K E. coli reads to the E. coli reference genome
● Running on a single core of a 3.0 GHz Intel Xeon Gold 6136
● Estimated accuracy using minimap2 as ground truth



Mapping Reads to E. coli

P N
T 85.70% 7.99%

F 1.03% 5.28%

Mapped 100K E. coli reads to the E. coli reference genome
● Running on a single core of a 3.0 GHz Intel Xeon Gold 6136
● Estimated accuracy using minimap2 as ground truth



Mapping Reads to E. coli

P N
T 85.70% 7.99%

F 1.03% 5.28%

P N
T 11.16 4.71

F 6.09 7.26

Mean Guppy Q Scores:

75.4% of “FPs” were not aligned by Minimap2

92.4% of FPs that Minimap2 aligned are explained by repeats

Mapped 100K E. coli reads to the E. coli reference genome
● Running on a single core of a 3.0 GHz Intel Xeon Gold 6136
● Estimated accuracy using minimap2 as ground truth



UNCALLED on Zymo
Tested UNCALLED on the Zymo high 
molecular weight mock microbial 
community standard
• Contains seven bacteria and one fungus

• Mapped reads to the full 41Mbp reference 
at a rate of ~6,000 bp/thread/sec

• Match minimap2 alignments 
with 96% accuracy

Read lengths:
Median: 12.2Kbp
Mean:    15.9Kbp
N50:       24.7Kbp

Sequencing by 
Yunfan Fan



● Mapping to a reference of the all bacteria

● Ejecting reads if they map within the first 
4,500bp (10 sec), enriching fungal 
sequence

● Sequenced same sample on flowcell of 
similar quality directly next to ReadUntil 
run as control

● Running with 48 threads on a 3.0 GHz 
Intel Xeon Gold 6136 (probably overkill)

Bacterial Depletion on Zymo



Read decision accuracy:
Correctly eject: 3,467,492  96.74%
Correctly kept:         49,282  99.78%
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● Mapping to a reference of the all bacteria

● Ejecting reads if they map within the first 
4,500bp (10 sec), enriching fungal 
sequence

● Sequenced same sample on flowcell of 
similar quality directly next to ReadUntil 
run as control

● Running with 48 threads on a 3.0 GHz 
Intel Xeon Gold 6136 (probably overkill)

Bacterial Depletion on Zymo

9.634.50Fold change:

Read decision accuracy:
Correctly eject: 3,467,492  96.74%
Correctly kept:         49,282  99.78%



Human Gene Enrichment

• Could provide a low-cost and portable 
method to identify, SNVs, SVs, and 
epigenetic modifications

• Mapping to a 18.6 Mbp reference, 
ejecting reads that don’t map in 3 sec, 
ran for 72 hours

• Also masked low-complexity and 
repetitive regions, and performed two 
nuclease flushes on each run

Exons

Introns

Flanking
Sequence

(20Kbp per end)

All 148 genes from every Invitae cancer panel:
ABRAXAS1 CDKN1B EXT1    HOXB13 NOP10   RECQL  SDHC XRCC2
AIP      CDKN1C EZH2    HRAS   NTHL1   RECQL4 SDHB
AKT1     CEBPA  FANCA   KIF1B  PALB2   REST   SDHD
ALK      CDKN2A FANCB   KIT    PALLD   RET    SLX4
AP2S1    CEP57  FANCC   LZTR1  PARN    RINT1  SMAD4
APC      CHEK2  FANCD2  MC1R   PDGFRA  RNF43  SMARCB1
ATM      CFTR   FANCE   MAX    PHOX2B  RPL11  SMARCA4
ATR      CPA1   FANCF   MEN1   PIK3CA  RPL15  SPINK1
AXIN2    CTNNA1 FANCG   MET    PMS2    RPL26  SMARCE1
BAP1     CTC1   FANCI   MITF   POLD1   RPL35A STK11
BARD1    DIS3L2 FANCL   MLH1   POT1    RPL5   SUFU
BMPR1A   CTRC   FANCM   MLH3   POLE    RPS10  TERT
BLM      CTR9   FLCN    MRE11  PRKAR1A RPS19  TERC
BRCA1    DICER1 FH      MSH2   PRSS1   RPS20  TINF2
BRCA2    DKC1   GALNT12 MSH3   PTCH1   RPS24  TMEM127
CASR     EGLN1  GATA1   MSH6   PTCH2   RPS26  TP53
BUB1B    EGFR   GEN1    NBN    PTEN    RPS7   TSC1
BRIP1    EPCAM  GATA2   MUTYH  RAD50   RTEL1  TSC2
CDC73    ENG    GNA11   NF1    RAD51C  RUNX1  VHL
CDK4     ERCC4  GPC3    NF2    RAD51D  SDHA   WRN
CDH1     EXT2   GREM1   NHP2   RB1     SDHAF2 WT1 

Enriching GM12878 for genes associated with hereditary cancer



Hereditary Cancer Gene Enrichment
Mean Control 
Coverage: 5.5x



Hereditary Cancer Gene Enrichment
Mean Control 
Coverage: 5.5x

Mean UNCALLED 
Coverage: 29.6x



Hereditary Cancer Gene Analysis
Small variant calling with Clair

Dataset Precision Recall F1

SNPs
Control (5x) 41.9% 39.4% 0.406

UNCALLED (29.6x) 92.8% 97.6% 0.951

ONT WGS (51.1x) 93.2% 98.5% 0.958

Indels

Control (5x) 37.6% 23.4% 0.288

UNCALLED (29.6x) 80.4% 73.1% 0.766

ONT WGS (51.1x) 79.9% 72.7% 0.761



Hereditary Cancer Gene Analysis
Small variant calling with Clair

Dataset Precision Recall F1

SNPs
Control (5x) 41.9% 39.4% 0.406

UNCALLED (29.6x) 92.8% 97.6% 0.951

ONT WGS (51.1x) 93.2% 98.5% 0.958

Indels

Control (5x) 37.6% 23.4% 0.288

UNCALLED (29.6x) 80.4% 73.1% 0.766

ONT WGS (51.1x) 79.9% 72.7% 0.761

Structural variant calling with Sniffles
• 50 SVs detected from UNCALLED reads

• 100% concordance with 50x coverage 
ONT WGS and 30x PacBio HiFi reads

• More than double the number of SVs 
detected with 50x coverage whole-
genome Illumina sequencing



Hereditary Cancer Gene Analysis
Small variant calling with Clair

Dataset Precision Recall F1

SNPs
Control (5x) 41.9% 39.4% 0.406

UNCALLED (29.6x) 92.8% 97.6% 0.951

ONT WGS (51.1x) 93.2% 98.5% 0.958

Indels

Control (5x) 37.6% 23.4% 0.288

UNCALLED (29.6x) 80.4% 73.1% 0.766

ONT WGS (51.1x) 79.9% 72.7% 0.761

Methylation calling with Nanopolish

Structural variant calling with Sniffles
• 50 SVs detected from UNCALLED reads

• 100% concordance with 50x coverage 
ONT WGS and 30x PacBio HiFi reads

• More than double the number of SVs 
detected with 50x coverage whole-
genome Illumina sequencing

.96 Pearson correlation 
coefficient with 50x 
ONT WGS sequencing

Found evidence of X-
inactivation



Structural Variant Breakdown
56 concordant SVs overall
• 39 insertions, 17 deletions

Classified insertions and deletions 
by repeat alignment and overlap
• 56% of insertions and 41% of deletions 

are simple repeats or low-complexity

• 16% of insertions and 29% of deletions 
overlap or align to Alu elements

One SV was found in an exon
• Heterozygous Alu insertion in MUTYH
• Mutations in this gene promote 

colorectal and breast cancers



Class Project
• UNCALLED started as a project for this class!
• How we split the work between the three of us:

– Collecting/parsing raw nanopore signal data
– Signal processing/k-mer matching
– FM Index construction/basic search algorithm

• All of us brainstormed how the algorithm should work
• We did not have a functional aligner in the end

– Created a signal-based FM index (later turned out to be unnecessary)
– Figured out how to compute event/k-mer match probabilities 

(but messed up signal normalization)
– Could produce seed alignments based on a very simple algorithm 

(but had no way to filter the many many false positives)
• Despite the incompleteness it was a successful project!



Welcome to Applied Comparative 
Genomics

https://github.com/schatzlab/appliedgenomics2
020

Questions?



Reduced UNCALLED Yield
UNCALLED has ~50% the yield of control 
● Fewer pores are active throughout

● Partially explained by ejections causing more 
gaps between reads, but not entirely

● Pores do not seem to be “dying” faster

Likely due to ejections causing more 
pore blockages
● Maybe single stranded DNA self binding, or 

more reads mean more chances to clog



Nuclease Flush Results



Event/k-mer Match Probability Threshold
For each event, we 
consider all k-mers 
which match with 
probability above 
some threshold

Lower threshold 
means
● Takes more time to 

process the event
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Event/k-mer Match Probability Threshold
For each event, we 
consider all k-mers 
which match with 
probability above 
some threshold

Lower threshold 
means
● Takes more time to 

process the event
● Higher chance of 

seeing correct k-mer



Event/k-mer Match Probability Threshold

Smaller FM index ranges 
represent fewer genomic 
locations 
● Fewer possible distinct 

sequences
● Less potential for 

branching

Threshold gets lower 
(considers more k-mers) 
as FM index range gets 
smaller
● Must change with 

reference size/repeat 
content


