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What is Read Alignment?

TTCAAATGAACTTCTGTAATTGAAAAATTCATTTAAGAAATTACAAAATATAGTTGAAAGCTCTAACAATAGACTAAACCAAGCAGAAGAAAGAGGTTCAGAACTTGAAGACAAGTCTCTTATGAATTAACCCAGTCAGACAAAAATAAA
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Why align reads?

Variant calling

Zoom in on target regions
Sequence classification
Assembly validation

N 2

{
ONT

sw| whumina/iox | PacBio | ONT |
I
suliumina/1ox | PacBio

|
1
i
{

sw| tlumina/10X | PacBio | ONT

o lumina/10x | PacBio | ONT

Comprehensive analysis of structural variants in breast cancer genomes

using single molecule sequencing. (Aganezov et. al., 2019)

Query sequence

K-mer to LCA mapping
(pre-computed database)

2

Examine hit taxa
and ancestors

Classification
tree and path

<=

Taxonomy tree

Sequence classified as belonging to leaf of
classification (highest-weighted RTL) path

Kraken: ultrafast metagenomic sequence classification
using exact alignments (Wood et. al., 2014)



Why is it difficult?

Genomes are very large

Many reads in each experiment
Sequencing error .
Repetitive sequences Semsemeeea ae—eaae

https://nanoporetech.com/resource-centre/think-small-nanop
ores-sensing-and-synthesis

Growth of SRA Entries (2007-2016*)
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| 2007 | 2008 [ 2009 | 2010 [ 2011 [ 2012 [ 2013 [ 204 [ 2015 | 2016 A. P. Jason de Koning, Wanjun Gu, [...], and David D. Pollock
~¢—Total number of bases (in Th) | 0.04 2.07 1125 64.53 | 211.68 885.14 1713.6!‘162?»68 423311 5005.71
s~ Over all data size (in TB) | 006 | 1229 | 2710 | 12196 | 217.65 | 650.77 |1180.33 | 171412 | 2627.35 | 3051.43
|——MNumber of open acessiblebases (inTh) | 0.04 | 207 | 1094 | 5470 | 15541 26014 | 80310 | 1424.81 | 249547 204381
Data size of open accessible bases (inT8)| 0.06 | 1229 | 2691 | 105.96 | 18086 | 312.41 | 597.41 | 975.99 | 1640.96 1903.10
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Alignment Algorithms
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Breaking the Problem Down

Common technique is to solve an easier version of
the problem and then bridge the gap later

Original Problem: Given a read, where in the
genome is the best match for the read (given some
distance measure)?

Increasing complexity

>

Actual biological problem

We need good heuristics
to span this gap

Problems with fast
computational solutions



Easier Read Alignment Problems

Original Problem: Given a read, where in the genome is the best match for the
read (given some distance measure)?

What would make this problem easier?



Easier Read Alignment Problems

Original Problem: Given a read, where in the genome is the best match for the
read (given some distance measure)?

What would make this problem easier?

Source of Difficulty Why is it harder? Easier Version
Genome large Lots of candidate matches Restrict to some region of the genome
Sequencing error Even “matches” aren’t Require exact matches

exactly the same sequence

Genome repetitive Lots of locations can be Report any sufficiently good match
close to the best match



Seed and Extend Motivation

Source of Difficulty Why is it harder? Easier Version
Genome large Lots of candidate matches Restrict to some region of the genome
Sequencing error Even “matches” aren’t Require exact matches

exactly the same sequence

Genome repetitive Lots of locations can be Report any sufficiently good match
close to the best match

Easy Version: Given a sequence, where in the genome are the exact
matches to it (if there are any)?

This lecture focuses on this version of the problem, and seed and extend is
one heuristic for bridging the gap between this and the original problem.



Pigeonhole Principle

Suppose we could guarantee that for any read, the best match would have at most
1 mismatch.

| | | |
| | | | | |
| | > | |
| | | |
- | Break reads - |
| i | in half | | |

Example reads Every read has at least one

(mismatches in red) half with no mismatches

This principle generalizes to more mismatches; if a read has at most k mismatches
and we divide it into k+1 segments, there will be at least one mismatch-free segment.



Seed and Extend Technique

1. Split read into seaments

Read Read (reverse complement)

CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG

Policy: extract 16 nt seed every 10 nt

Seeds
+, 0: CCAGTAGCTCTCAGCC -, 0: TACAGGCCTGGGTAAA
+, 10: TCAGCCTTATTTTACC -, 10:
+, 20: TTTACCCAGGCCTGTA -, 20: GGCTGAGAGCTACTGG

2. Lookup each seament and prioritize

Seeds Ungapped Seed alignments (as B ranges)
+,0: CCAGTAGCTCTCAGCC alignment with T 211, 2121, [212, 2147 i)
+, 10: TCAGCCTTATTTTACC FM Index { [653, 654], [651, 653] }
+, 20; TTTACCCAGGCCTGTA —» | [684, 685] }

-, 0: TACAGGCCTGGGTAAA L

c
9
c
$

-, 10: | [ttt
-, 20: GGCTGAGAGCTACTGG o © { [624, 625] }

3. Evaluate end-to-end match

Extension candidates SIMD dynamic SAM alignments
SA:684, chrl2:1955 programming B Shel2 036 W
aligner 36M 0 0

SA:624, chr2:462 > CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA
EomnmssmmEn =  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
SA:211: chr4:762 EEEEaRES AS:i:@  XS:i:-2 XN:i:0
Il

SA:213: chrl2:1935 CEEEE! XM:i:0 X0:1:0 XG:1:0

} 0 NM:i:0  MD:Z:36 YT:Z:UU
I

SA:652: chrl2:1945 miie (Langmead & Sa|Zberg, 2012)




Areas of Improvement

Read alignment problem

. (goal)
Improve exact substring search
algorithms T
= Seed and extend +
% dynamic programming
Extend substring search algorithms to 5
work with some amount of mismatches g
@®
(O]
. 2 Exact substring search
Better heuristics to go from exact = problem (“solved”)
matches to full alignments -




Brute Force Algorithm




Brute Force Algorithm

e Brute Force:
o At every possible offset in the genome:
m Do all of the characters of the query match?

e Analysis
o Simple, easy to understand
o Genome length = n [3B]
o Querylength =m [7]
o Comparisons: (n-m+1) *m [21B]

e Overall runtime: O(nm)



Brute Force Reflections

Why check every position?

o GATTACA can't possibly start at positions 10-14 [WHY?]
T G A T T A C A G A A C
G A A C A
— Improve runtime to O(n + m) [3B + 7]

 If we double both, it just takes twice as long
» Knuth-Morris-Pratt, 1977
» Boyer-Moyer, 1977, 1991

— For one-off scans, this is the best we can do (optimal performance)
» We have to read every character of the genome, and every character of the query
» For short queries, runtime is dominated by the length of the genome



Is this Good Enough?

How long would this algorithm take to align 30x short (100 bp) read data to the
human genome on a single processor?



Is this Good Enough?

Genome size:
3,000,000.000 bp

Number of reads:
(3 billion bp) * (30x coverage) / (100 bp per read) = 900 million reads

Runtime per read:
n + m = (3 billion) + 100 = 3.0001 billion operation ~= 3 seconds/read

Total runtime:
3 seconds/read * 900 million read ~= 86 years

If we start this run right now on 100 processors in parallel, it'll finish right around
the end of the calendar year!



Data Structures are Everywhere

A data structure is a way of organizing data so that the updates/queries you
need for a specific application are more efficient.

Example: You have a list of numbers, and want to know how many times
different numbers occur in the list. If you know in advance that you'll get many
queries, how can you restructure the data so that each query is faster?

{11,1, 3, 5,17, 23,12, 35, 54, 22, 19, 4, 31,42, 12, 23, 1, 12, 14, 20, 1}



Data Structures Example

Example: You have a list of numbers, and want to know how many times
different numbers occur in the list. If you know in advance that you’ll get many
queries, how can you restructure the data so that each query is faster?

{11,1, 3, 5,17, 23,12, 35, 54, 22,19, 4, 31,42, 12, 23, 1, 12, 14, 20, 1}

Frequency Array/Hash Table
Map each number to the number of times it occurs, and then just look up this number for each query.

Sorted Array

All of the copies of a number will be stored together, and algorithms like binary search can be used to
quickly find where they are in O(log(n)) operations.




Suffix Arrays




Phone Books: A Data Structure for Text

» Suppose you are trying to call the Genome Hunters to help you analyze some genomes
» We don't need to check every page to find “Genome Hunters”

« Sorting alphabetically lets us immediately skip 96% (25/26) of our contacts list
without any loss in accuracy
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Suffix Arrays: Sorting a String

» Sorting the genome: Suffix Array (Manber & Myers, 1991)
— Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically



Compare to the middle, refine as higher or lower

Searching the Index
« Strategy 2: Binary search

Lo

Searching for GATTACA

Lo=1; Hi=15;

Hi

ACAGATTACC...

ACC...

AGATTACC...

ATTACAGATTACC...

ATTACC...

C...

CAGATTACC...

wWlo|N|oc|j|un|ph|lw|DND]|—

CC...

GATTACAGATTACC...

GATTACC...

TACAGATTACC...

TACC...

TGATTACAGATTACC...

TTACAGATTACC...

TTACC...




Searching the Index
« Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
Middle = Suffix[8] = CC

Lo

Hi

ACAGATTACC...

ACC...

AGATTACC...

ATTACAGATTACC...

ATTACC...

C...

CAGATTACC. ..

CC...

Wl |[IN|oc|Un ||l W || —

GATTACAGATTACC...

GATTACC...

TACAGATTACC...

TACC...

TGATTACAGATTACC...

TTACAGATTACC...

TTACC...




Searching the Index
« Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo =1; Hi=15; Mid = (1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + 1

Lo

Hi

ACAGATTACC...

ACC...

AGATTACC...

ATTACAGATTACC...

ATTACC...

C...

CAGATTACC. ..

CC...

Wl |[IN|oc|Un ||l W || —

GATTACAGATTACC...

GATTACC...

TACAGATTACC...

TACC...

TGATTACAGATTACC...

TTACAGATTACC...

TTACC...




Searching the Index
« Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo =1; Hi=15; Mid = (1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + 1

Lo=9; Hi=15;

Sequence

9 | GATTACAGATTACC... 2
10 | GATTACC... 9
Il | TACAGATTACC... 5
12 | TACC... 12
13 | TGATTACAGATTACC... |
14 | TTACAGATTACC... 4
I5 | TTACC... I




Searching the Index
« Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

# | Sequence

* Searching for GATTACA
* Lo=1;Hi=15; Mid = (1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + 1

* Lo=9;Hi=15; Mid = (9+15)/2 =12

+ Middle = Suffix[12] = TACC I=Q
9 | GATTACAGATTACC... 2
10 | GATTACC... 9
1l | TacAGATTACC... 5
I
13 | TGATTACAGATTACC... [
14 | TTACAGATTACC... 4
|i I5 | TTACC... T



Searching the Index
Strategy 2: Binary search

« Compare to the middle, refine as higher or lower

Sequence

Searching for GATTACA
* Lo=1;Hi=15; Mid = (1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + 1

. Lo=9; Hi=15; Mid = (9+15)/2 = 12

- Middle = Suffix[12] = TACC Lo
=> Lower: Hi = Mid - 1 9 | GATTACAGATTACC... 2

10 | GATTACC... 9

e Lo=9: Hi=11; Ii Il | TACAGATTACC... 5




Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

# | Sequence

Searching for GATTACA
* Lo=1;Hi=15; Mid = (1+15)/2=8
+ Middle = Suffix[8] =
=> Higher: Lo = Mid + 1

« Lo=9;Hi=15; Mid = (9+15)/2 =12
« Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - 1

* Lo=9;Hi=11;,Mid =(9+11)/2 =10
+ Middle = Suffix[10] = GATTACC




Searching the Index

Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo=1; Hi=15; Mid = (1+15)/2 =8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + 1

Lo =9; Hi = 15; Mid = (9+15)/2 =12
Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - 1

Lo =9; Hi =11; Mid = (9+11)/2 =10
Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - 1

Lo=9;Hi=09;

# | Sequence

GATTACAGATTACC...




Searching the Index
Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo =1; Hi=15; Mid = (1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + 1

Lo =9; Hi = 15; Mid = (9+15)/2 =12
Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - 1

Lo =9; Hi =11; Mid = (9+11)/2 =10
Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - 1

Lo=9; Hi=9; Mid = (949)/2=9
Middle = Suffix[9] = GATTACA...
=> Match at position 2!

# | Sequence

[ J - H e —
A [ lomoome. 2|



Binary Search Analysis

» Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range [WHEN?]

* Analysis
* More complicated method
 How many times do we repeat?

* How many times can it cut the range in half?
* Find smallest x such that: n/(2*) < 1; x = 1g,(n) [32]

« Total Runtime: O(m Ign)
» More complicated, but much faster!
» Looking up a query loops 32 times instead of 3B



Binary Search Analysis

» Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range [WHEN?]

* Analysis
* More complicated method
 How many times do we repeat?

* How many times can it cut the range in half?
* Find smallest x such that: n/(2*) < 1; x = 1g,(n) [32]

« Total Runtime: O(m Ign)

Can be reduced to O(m + Ig n), or ~2 minutes on 30x human dataset,
using an auxiliary data structure called the LCP array




Suffix Arrays in Practice

A few additional notes:

Don’t actually store the suffixes - instead store their starting positions
There are O(n) algorithms for construction

e Once the suffix array is made it can be used for all queries when
mapping to the same reference (even for reads from different
sequencing runs)

Downsides

e Requires loading the entire suffix array into memory (high RAM)
e Binary search requires memory accesses which are far apart (bad for
cache)



Burrows Wheeler Transform




Algorithmic challenge

How can we combine the speed of a
suffix array O(m + Ig(n))

(or even O(m)) with the size of a brute
force analysis (n bytes)?

What would such an index look like?



Bowtie: Ultrafast and memory efficient
alignment of short DNA sequences to the
human genome

Slides Courtesy of Ben Langmead



Burrows-Wheeler Transform

® Permutation of the characters in a text

$acaacg

aacgS$ac

acaacg$
acaacg$ —> acg$aca— gcS$Saaac

T caacg$a

cg$acaa

g$acaac

Burrows-Wheeler
Matrix BWM(T)

e BWT(T) is the index for T

BWT(T)

A block sorting lossless data compression algorithm.
Burrows M, Wheeler D] (1994) Digital Equipment Corporation. Technical Report 124



Run Length Encoding




Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, it was the epoch of incredulity, it was the season of Light, it wa
s_the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
,_we _were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period, _
that some of its noisiest authorities insisted on its being received

,_for good or for evil, in the superlative degree of comparison only.$

Run Length Encoding:

* Replace a “run” of a character X with a single X followed by the length of the run
«  GAAAAAAAATTACA => GA8BT2ACA (reverse is also easy to implement)
* If your text contains numbers, then you will need to use a (slightly) more sophisticated encoding




Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
,_1it was the epoch of incredulity, it was the season of Light, it wa
s_the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
,_we _were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period, _
that some of its noisiest authorities insisted on its being received

,_for good or for evil, in the superlative degree of comparison only.$

rle(ref) [614]:

It was_the best of times, it was the worst of times, it was the age
of wisdom, it was the age of fo2lishnes2, it was_ the epoch of belief
,_1t was the epoch of incredulity, it was the season of Light, it wa
s_the season of Darknes2, it was_ the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
,_wWe were al2 going direct to Heaven, we were al2 going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

,_for go2d or for evil, in the superlative degre2 of comparison only.$




Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, it was the epoch of incredulity, it was the season of Light, it wa
s_the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
,_we _were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period, _
that some of its noisiest authorities insisted on its being received

,_for good or for evil, in the superlative degree of comparison only.$

bwt [614] :

.dlmssftysesdtrsns_ y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, nfrsdnnhereghettedndeteegeenstee, ssssst,esssnssffteedttttttttttr,,
, eeefehh p fpDwwwwwwwwwwweehl ew eoo_neeeoaaeoo_ sephhrrhvh

hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc__tttttttttttttttttts tsgltsLlvtt hhoor
e wrraddwlors r lteirillre ouaanocoiioecoooiiihkiiiiiio iei
tsppioi ggnodsc_sss_gfhf fffhwh nsmo uee sioocoaeeeeoco ii

cgppeeacaecoeesseuutetaaaaaaaaaaal ei in aale eeerei hrsssnacciili

iiiiiisn oyoui a iiids__ aiiaee tlar




Run Length Encoding

ref[614]:

It was_the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, 1t was the epoch of incredulity, it was the season of Light, it wa
s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
,_we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,

that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

bwt[614]:

.dlmssftysesdtrsns y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, nfrsdnnhereghettedndeteegeenstee, ssssst,esssnssffteedttttttttttr,,
, eeefehh p fpDwwwwwwwwwwweehl ew_ eoo_neeeoaaeoco_ sephhrrhvh

hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc_ tttttttttttttttttts tsgltsLlvtt hhoor
e _wrraddwlors r lteirillre ouaanooiioeocoocoiiihkiiiiiio iei
tsppioi ggnodsc_sss_gfhf fffhwh nsmo uee siooocaeeeeoco ii

cgppeeaoaeoceesseuutetaaaaaaaaaaai el in aaie eeerei hrsssnacciiIi

iiiiiisn oyoul a iiids aiiaee tlar

$acaacg

aacg$ac

acaacg$
acaacg$ —> acg$aca—— gcS$Saaac

caacg$a

cg$acaa

g$acaac

Why does the BWT tend to make runs in english text?




Run Length Encoding

bwt [614] :

.dlmssftysesdtrsns y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, nfrsdnnhereghettedndeteegeenstee, ssssst,esssnssffteedttttttttttr,,
, eeefehh p fpDwwwwwwwwwwweehl ew eoo neeecaaeoo_ sephhrrhvh

hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc_ tttttttttttttttttts tsgltsLlvtt hhoor
e wrraddwlors r lteirillre ouaanooiioeocoooiiihkiiiiiio iei
tsppioi ggnodsc_sss _gfhf fffhwh nsmo uee siocooaeeeeoco ii

cgppeeaocaeoceesseuutetaaaaaaaaaaal  ei in aaie eeerei hrsssnacciiIi

iiiidiisn oyoui a iiids_aiiaee tlar

rle (bwt) [464]:

.dlms2ftysesdtrsns_y 2$ yfofed4tg2sfefefgle2drofr,l2re2f-,fs,9nfrsdn2
hereghet2edndete2ge2nste2, s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlle2h
1 ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2eo0l2_ 4e2n6a2i_3ec2_ 2tl8s_tsgltsLlvt2 3h2o2re_wr2ad2
wlors 9r 2lteiril2re oua2no2i2oeo4i3hki6o 2ieitsp2ioi 12g2nodsc _s3 g
fhf f3hwh nsmo 2ue2 sio3ae402_ i2cgp2e2acaec2e2s2eultetalli 2ei_in 2a

2ie e3rei hrs3nac2i2Ii7sn 15oyoui 2a i3ds 2ai2ae2 21ltlar




Run Length Encoding

bwt [614] :

.dlmssftysesdtrsns y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, nfrsdnnhereghettedndeteegeenstee, ssssst,esssnssffteedttttttttttr,,
, eeefehh p fpDwwwwwwwwwwweehl ew eoo neeecaaeoo_ sephhrrhvh

hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc_ tttttttttttttttttts tsgltsLlvtt hhoor
e wrraddwlors r lteirillre ouaanooiioeocoooiiihkiiiiiio iei
tsppioi ggnodsc_sss _gfhf fffhwh nsmo uee siocooaeeeeoco ii

cgppeeaocaeoceesseuutetaaaaaaaaaaal  ei in aaie eeerei hrsssnacciiIi

iiiidiisn oyoui a iiids_aiiaee tlar

rle (bwt) [464]:

.dlms2ftysesdtrsns_y 2$ yfofed4tg2sfefefgle2drofr,l2re2f-,fs,9nfrsdn2
hereghet2edndete2ge2nste2, s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlle2h
1 ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2eo0l2 4e2n6a2i 3ec2 2tl18s tsgltsLlvt2 3h2o2re wr2ad2
wlors 9r 2lteiril2re oua2no2i2oeo4i3hki6o 2ieitsp2ioi 12g2nodsc _s3 g
fhf f3hwh nsmo 2ue2 sio3ae4o02 i2cgp2elaocaeo2e2s2eu2tetalli 2ei in 2a

2ie e3rei hrs3nac2i2Ii7sn 15oyoui 2a i3ds 2ai2ae2 21ltlar

Saved 614-464 = 150 bytes (24%) with zero loss of information!




Burrows-Wheeler Transform

* Recreating T from BWT(T)

— Start in the first row and apply LF repeatedly,
accumulating predecessors along the way

Original T

f—%
g cg acg aacg caacg acaacg
$—> $ g $ g $ g $ g $ g
a a C a (o] a C | —— a (o
a $\ a $ a $ a $/4a $\a $
a a a a a a a —P 3 a a a a
(o a C a C a/c a C a Cc =P 2a
(o a a/c—>a C a C a C a
g c ge=—=»c’ ¢ c g c g c g c



BWT Exact Matching

* LFc(r, c) does the same thing as LF(r) but it
ignores r’s actual final character and

“pretends” it’s c:
LFc(5, g) = 8
$acaacg
aacg$ac

acaacgs$
acg$aca

caacg$a
cg$acaa @JR\k-Z
Rank 2 g $ c ank.
F




BWT Exact Matching

@ Start with a range, (top, bot) encompassing all rows and repeatedly apply modified
LF-mapping:
top = LFc(top, qc); bot = LFc(bot, qc)

gc = the next character to the left in the query

aac aac aac aac

—$ gc $ g $ g $ g
a c a (o a C __»—>aac c
a $ a $ —>ac $a — a $
a a a a ac a/ a a
c a —C aa —C aa c a
c a c a/ [ a c a
g c ——g ca g c g c

—_— C/

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.
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BWT Notes

Query is O(m) because we apply m LF-mappings

We still need a few other data structures

€ Cumulative frequency arrays

€ Suffix array

But since we’re getting the suffix array range with LF-mappings, we can
get away with storing only a sample of it



Sapling: Accelerated Suffix Array Queries
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Cycles (f = 2.8GHz)

Binary Search and Caching

Runtimes for repeated binary searches in sorted vectors

| 1 1
5 10 15 i
Size of vector (Ig(n))

“Binary Search is a pathological case for caches” (Khuong, Paul)

Memory Hierarchy

CPU
Registers
Cache
Level 1

Level 2

Level 3

Main memory

Physical RAM and Virtual Memory

Storage Devices

ROM, Hard Drives and Removable Devices

Size: ~1KB
Latency: ~1 cycle
Cost/Bit: Very high

Size: ~32KB to 2MB
Latency: ~3 to 5 cycles
Cost/Bit: High

Size: ~1GB
Latency: ~200 cycles
Cost/Bit: Low

Size: ~1TB

Latency: ~10,000,000 cycles

Cost/Bit: Very low



Back to the Phone Book

i ATET = 10:08 PM o

A1l s

All Cc

karen Ross
el S If your query starts with Z, using
Karla Smith these markers is probably faster

than binary search

/

Kate Wolfram
Katherine Blank

Katherine Lindauer

<C—(WIJO'UOZEF‘7<L—ID"1MUOCJ>]

-

HEN<XZ=

Katherine Luellen _ o
How is the contact list implemented?

Katherine Silva

P S
Contacts




Data Structures as Functions

Index 1 2 3 4 5 6 7 8 9,10 11| 12

Value 1 1 2 3 6 6 6 7 8 9 91 10

Array Index

Data Value

Goal: Approximate the function and use that to speed up queries



Suffix Array Position Function

a) E. coli b) C. elegans

c) H. sapiens (hg38 chr1)

ACTAG

l Encode each base with 2 bits

Suffix Array Position

00 |01 11 00 |10

e) H. sapiens (hg38)

f) T. aestivum

d) S. lycopersicum

l Convert to base 10

0001110010, = 114,

Suffix Array Position

K-mer value K-mer value K-mer value



Learned Index Structures

! o ﬁ Train a model on all data points \
' l Viwhed 23 2. Predict the position of all data points and
I . P p—— 33 determine maximum prediction error E
x ‘ oot ’ ZATOE 207 ‘ \ S 3. When performing a lookup, compute the
l’ predicted position, and search within the

K range [p - E, p + E] /

The Case for Learned Index Structures (Kraska et. al., 2018)



Applying to Suffix Arrays

Suffix Query String Q = AACTATT
Array Which suffixes start with Q2
\
Binary search [ \ J:L
requires searching \\ K-mer K-mer Index o Prediction Function
across the entire A S Value sy Lare malrig) ( PER-TET b THEER \W

suffix array L___:> L\ Error Bound E = <J

’ AACGCGG 410 1234568 maxS(IP(S) - T(8) 1)
. AACGGAT| 419 [1234569[
\ AACGGGA| 424 1234570 J:L
\ [aaceTTT| 447 [1234571f

i AACTAAA 448 1234672 - Predicted Position P (Q)

v |aactaaa| 448 [1234573 )

\ |AACTATT 463 1234574 3

1 DRl Sle 1234575 X Possible values for T(Q) =
|AAGAAAA| 512 1284576 | ™

' o [P(Q) - E, P(Q) + E]
SR s e Results in better locality




Modeling the function

a) ANN Architecture b) Piecewise Linear Architecture

Predicted Predicted [ Suffix Array Distribution
Residual SA Position o Piecewise Linear

c
e
‘0
O
o
c >
i<} o
e —_
@ <
Qo &
§ > I:ReS|dua| S
g 7]
S <
§ H>=_< [[] SA Position
>
n [[] Linear Estimate : : : : : : :
N J
| Y

L Layers k-mer k-mer space divided into b bins



Modeling Results
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Runtime(seconds)

600

500

400

300

200

100

Runtime of Exact Matching

[ )
~e,

~,
)
~0.g-0-0

10

A0 e
o \./ \

o-0.,
oo

N o, -9,
o, / L] L]
~o \., \./ \

15 20
log2(NumberofBins)

25

30

Runtime Results

—— Bowtie
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Binary Search
—e— Sapling
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Runtime Scaling with Genome Size

—e— Binary Search
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Suffix Array Position

Suffix Array Position

d)

What makes certain bins behave poorly?

e)(f—’* f)

N

.

K-mer value K-mer value K-mer value



Future Work

Extend into full aligner (currently just a proof-of-concept with very
simple seed-and-extend heuristics)

Fitting other types of functions between simple piecewise linear and
complex neural network

Apply to other data structures (e.g., FM-index)

Apply to other problems in genomics



Conclusions

-> Two key components to read alignment
€ Exact substring search

€ Seed-and-extend heuristics

=> Data structures enable fast algorithms for exact substring search
Suffix Arrays

FM-Index

Sapling

L 2R 2R 2R 4

Many others!

=> Even theoretically optimal algorithms may not be optimal in practice



