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Assignment 2: Genome Assembly
Due Wednesday Feb 12 @ | 1:59pm

. Setup Docker/Ubuntu
. Initialize Tools
Download Reference Genome & Reads

-Ik}uN~

. Decode the secret message

|. Estimate coverage, check read quality
2. Check kmer distribution

3. Assemble the reads with spades

4.  Align to reference with MUMmer
5. Extract foreign sequence
6. dna-encode.pl -d

THE MISSION BEGINS 05:05:06
4

https://github.com/schatzlab/appliedgenomics2020/blob/mas
ter/assignments/assignment2/README.md

’




Assignment 3: Due Wed Feb |9

Assignment 3: Coverage, Genome Assembly, and Variant Calling

Assignment Date: Wednesday, Feb. 12, 2020
Due Date: Wednesday, Feb. 19, 2020 @ 11:59pm

Some of the tools you will need to use only run in a linux or mac environment. If you do not have access to a linux/mac machine, download and install a virtual machine or ubuntu instance
following the directions here: https://github.com/schatzlab/appliedgenomics2018/blob/master/assignments/virtualbox.md

Alternatively, you might also want to try out this docker instance that has these tools preinstalled: https://github.com/mschatz/wga-essentials

Question 1. Coverage simulator [10 pts]
¢ Q1a. How many 100bp reads are needed to sequence a IMbp genome to 5x coverage?

¢ Q1b. In the language of your choice, simulate sequencing 5x coverage of a 1IMbp genome and plot the histogram of coverage. Note you do not need to actually output the sequences of the
reads, you can just randomly sample positions in the genome and record the coverage. You do not need to consider the strand of each read. The start position of each read should have a
uniform random probabilty at each possible starting position (1 through 999,900). You can record the coverage in an array of 1M positions. Overlay the histogram with a Poisson distribution
with lambda=5

¢ Q1c. Using the histogram from 1b, how much of the genome has not been sequenced (has 0x coverage). How well does this match Poisson expectations?

¢ Q1d. Now repeat the analysis with 15x coverage: 1. simulate the appropriate number of reads, 2. make a histogram, 3. overlay a Poisson distribution with lambda=15, 4. compute the number
of bases with Ox coverage, and 5. evaluated how well it matches the Poisson expectation.

Question 2. de Bruijn Graph construction [10 pts]

e Q2a. Draw (by hand or by code) the de Bruijn graph for the following reads using k=3 (assume all reads are from the forward strand, no sequencing errors, complete coverage of the
genome)

ATTCA
ATTGA
CATTG
CTTAT
GATTG
TATTT




Assignment 4: Due Wed Mar 4

Assignment 4: Bedtools and Intro to Machine Learning

Assignment Date: Wednesday Feb 19, 2020
Due Date: Wednesday, March 4, 2020 @ 11:59pm

Assignment Overview

In this assignment, you will analyze variant data and make different visualization in the language of your choice. (We suggest Python, R, or perhaps Excel.) Make sure to show your work/code
in your writeup! As before, any questions about the assignment should be posted to Piazza.

Question 1. De novo mutation analysis [20 pts]

For this question, we will be focusing on the de novo variants identified in this paper:
http://www.nature.com/articles/npjgenmed201627

Download the de novo variant positions from here (Supplementary Table S4):
http://www.nature.com/article-assets/npg/npjgenmed/2016/npjgenmed201627/extref/npjgenmed201627-s3.xlsx

Download the gene annotation of the human genome here:
ftp://ftp.ensembl.org/pub/release-87/gff3/homo_sapiens/Homo_sapiens.GRCh38.87.9ff3.g9z

Download the annotation of regulatory variants from here:
ftp://ftp.ensembl.org/pub/release-87/regulation/homo_sapiens/homo_sapiens.GRCh38.Regulatory_Build.regulatory_features.20161111.gff.gz

Download chromosome 22 from build 38 of the human genome from here:
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/chr22.fa.gz

NOTE The variants are reported using version 37 of the reference genome, but the annotation is for version 38. Fortunately, you can 'lift-over' the variants to the coordinates on the new
reference genome using several avaible tools. | recommmend the USCS liftover tool that can do this in batch by converting the variants into BED format. Note, some variants may not
successfully lift over, especially if they become repetitive and/or missing in the new reference, so please make a note of how many variants fail liftover.

¢ Question 1a. How much of the genome is annotated as a gene?




Gene Models
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“Generic Feature Format” (GFF) records genomic features
— Coordinates of each exon
— Coordinates of UTRs
— Link together exons into transcripts

— Link together transcripts into gene models

http://www.sequenceontology.org/gff3.shtml



GFF File format

GFF3 files are nine-column, tab-delimited, plain text files
l. seqid: The ID of the sequence

2. source: Algorithm or database that generated this feature
3. type: gene/exon/CDS/etc. ..

4. start: | -based coordinate

5. end: | -based coordinate

6. score: E-values/p-values/index/colorsl/...

/.strand: “+’ for positive “-” for minus,*.” not stranded

8. phase: For "CDS", where the feature begins with reference

to the reading frame (0,1,2)
9. attributes: A list of tag=value features

Parent: Indicates the parent of the feature (group
exons into transcripts, transcripts into genes, ...)



I 1 1 1 1 1 1 1 ! !

I T T T T T T T T T

G F F EXa m P I e Pronoteri:< * * * * 6k 7k Bk 28

gene
EDEN

A 4

nRNAs

Gene “EDEN” with 3 alternatively e S T s I
EDEN.2

spliced transcripts, isoform 3 has two IR

alternative translation start sites EDEN.3 (cDS 2)

##gff-version 3
##sequence-region ctgl23 1 1497228

ctgl23 . gene 1000 9000 . + . 1ID=gene00001;Name=EDEN

ctgl23 . TF binding site 1000 1012 . + . ID=tfbs00001;Parent=gene00001

ctgl23 . mRNA 1050 9000 . + . ID=mRNAOOOOl;Parent=gene00001;Name=EDEN.1l
ctgl23 . mRNA 1050 9000 + ID=mRNA00002;Parent=gene00001; Name=EDEN. 2
ctgl23 . mRNA 1300 9000 + ID=mRNA000O03;Parent=gene00001; Name=EDEN. 3
ctgl23 . exon 1300 1500 + ID=exon00001;Parent=mRNA00003

ctgl23 . exon 1050 1500 + ID=exon00002; Parent=mRNA000O1,mRNAQC0002

ctgl23 . exon 3000 3902 + ID=exon00003; Parent=mRNA00001,mRNAOC00O3

ctgl23 . exon 5000 5500 + ID=exon00004; Parent=mRNA000O1,mRNA00002,mRNA0C0003
ctgl23 . exon 7000 9000 + ID=exon00005; Parent=mRNA00001,mRNA00002,mRNA0C0003
ctgl23 . CDS 1201 1500 + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.l
ctgl23 . CDS 3000 3902 + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.l
ctgl23 . CDS 5000 5500 + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.l
ctgl23 . CDS 7000 7600 + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.l
ctgl23 . CDS 1201 1500 + 0 ID=cds00002;Parent=mRNA00002;Name=edenprotein.?2
ctgl23 . CDS 5000 5500 . + 0 ID=cds00002;Parent=mRNA00002;Name=edenprotein.?2
ctgl23 . CDS 7000 7600 . + 0 ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
ctgl23 . CDS 3301 3902 . + 0 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
ctgl23 . CDS 5000 5500 . + 1 1ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
ctgl23 . CDS 7000 7600 . + 1 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
ctgl23 . CDS 3391 3902 . + 0 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
ctgl23 . CDS 5000 5500 . + 1 1ID=cds00004;Parent=mRNA00003;Name=edenprotein.4

ctgl23 . CDS 7000 7600 . + 1 1ID=cds00004;Parent=mRNA00003;Name=edenprotein.4



BED Tools to the rescue!
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Plane Sweep to the Rescue!

E2 E3

El :
Exons M :

Sequence La] [Cas A ] [as ] Las ] [A9 ] Lao] [an] :
alignments Al2 :

How many comparisons does the plane sweep algorithm make?
Each read is compared to the “active set”

Relatively few exons overlap: average ~1.1 active exons/position

Total comparisons: 900M reads * 1.1 “active exons/read” = 990M comparisons ©

Output is basically as fast as we can read the input data ©



Machine Learning Primer |:

Unsupervised Learning
aka Clustering




Clustering Refresher
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Figure 2 | A synthetic gene-expression data set. This data set provides an opportunity to
evaluate how various clustering algorithms reveal different features of the data. a | Nine distinct d(p, q) = d(q, p) = \/(ql - p1)2 + (qz - p2)2 + -+ (q,, - pn)z =
gene-expression patterns were created with log,(ratio) expression measures defined for ten

experiments. b | For each expression pattern, 50 additional genes were generated,

representing variations on the basic patterns.

Computational genetics: Computational analysis of microarray data
Quackenbush (2001) Nature Reviews Genetics. doi:10.1038/35076576



Hierarchical Clustering
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Principle Components Analysis (PCA)

PC1: “New X"- The dimension with the most variability
PC2: “New Y”- The dimension with the second most variability



Principle Components Analysis (PCA)

Figure 4 | Principal component analysis. The same demonstration data set was analysed
using a | hierarchical (average-linkage) clustering and b | principal component analysis using
Euclidean distance, to show how each treats the data, with genes colour coded on the basis
of hierarchical clustering results for comparison.



Genotype Matrix

P1 P2 P3..

SNP1 0 1 O
SNP2 1 0 O
SNP3 0 0 2

O = hom ref
1 = het ref/alt
2 = hom alt

Genes mirror geography within Europe
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Novembre et al (2008) Nature. doi: 10.1038/nature0733 1




t-distributed Stochastic Neighborhood Embedding

Visualizing Data Using t-SNE
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Principal Components Analysis
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t-Distributed Stochastic Neighbor Embedding
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Non-linear dimensionality reduction technique: distances are only locally meaningful
Rather than Euclidean distances, for each point fits a Gaussian kernel to fit the nearest N
neighbors (perplexity) that define the probabilities that two points should be close together
Using an iterative spring embedding system to place high probability points nearby

van der Maaten & Hinton (2008) Journal of Machine Learning Research. 9: 2579-2605.



https://www.youtube.com/watch%3Fv=RJVL80Gg3lA
https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1

UMAP

COIL20 MNIST Fashion MNIST Word Vectors
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UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Mclnnes et al (2018) arXiv. 1802.03426


https://www.youtube.com/watch%3Fv=nq6iPZVUxZU
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

Machine Learning Primer 2:

Hidden Markov Models



What is an HMM!?

* Dynamic Bayesian Network
— A set of states

* {Fair, Biased} for coin tossing
» {Gene, Not Gene} for Bacterial Gene

* {Intergenic, Exon, Intron} for Eukaryotic Gene / \\E(S”S%/ \\P(S2|S3y X\

* {Modern, Neanderthal} for Ancestry

p(cilS1) p(oi|S1)  P(ci[S1)
— A set of emission characters
* E={H,T} for coin tossing
« E={1,2,3,4,5,6} for dice tossing
. E={A,C,G,T} for DNA

— State-specific emission probabilities
« P(H | Fair) = .5,P(T | Fair) =.5,P(H | Biased) = .9, P(T | Biased) = .|
* P(A| Gene) =.9,P(A | Not Gene) =.1 ...

— A probability of taking a transition
* P(si=Fair|s;.;=Fair) = .9, P(s;=Bias|s;., = Fair) .|
* P(s;i=Exon | s;.;=Intergenic), ...



Why Hidden!

* Observers can see the emitted symbols of an HMM (i.e.,
nucleotides) but have no ability to know which state the
HMM is currently in (exon/intron/intergenic/etc).

— But we can infer the most likely hidden states of an HMM based on
the given sequence of emitted symbols.

p(S1S1) p(S2/S2) p(S3[S3)

/ \'\E(SllS%)/ \\P(SZ|S3% \\

p(oi|S1) p(oilS1)  P(cilSI)

AAAGCATGC _GTGAGCAC sSATTACA



HMM Example - Casino Coin

State transition probs.

States

Symbol emission probs.

H ; «— Observation Symbols

Observation Sequence
HTHHTTHHHTHTHTHHTHHHHHHTHTHH — G

FFFFFFUUUFFFFFFUUUUUUUFFFFFF < State Sequence

Motivation: Given a sequence of H & Ts, can you tell at what times the casino cheated?

Slide credit: Fatih Gelgi, Arizona State U.



Three classic HMM problems

Evaluation: given a model and an output
sequence, what is the probability that the model

generated that output?

Decoding: given a model and an output
sequence, what is the most likely state sequence
through the model that generated the output?

Learning: given a model and a set of observed
sequences, how do we set the model’ s
parameters so that it has a high probability of
generating those sequences?



Three classic HMM problems

Evaluation: given a model and an output
sequence, what is the probability that the model

generated that output?

To answer this, we consider all possible paths
through the model

Example: we might have a set of HMMs
representing protein families -> pick the model with
the best score



Solving the Evaluation problem:
The Forward algorithm

* To solve the Evaluation problem (probability that the model

generated the sequence), we use the HMM and the data to
build a trellis

* Filling in the trellis will give tell us the probability that the

HMM generated the data by finding all possible paths that
could do it

— Especially useful to evaluate from which models, a given sequence
is most likely to have originated
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Let S, be initial state, S, be final state

€ 0.7



A trellis for the Forward Algorithm

R
Time
t=0 t=1 t=2 t=3
State '
S,

(0.9)(0.3)(0)

Output: A C C



A trellis for the Forward Algorithm

S
Time
t=0 t=1 t=2 t=3
State :
S,

(0.9)(0.3)(0)

Output: A C C

(0.9)(0.7)(0.2)



A trellis for the Forward Algorithm

Time

State

(0.9)(0.3)(0) (0.9)(0.7)(0

Output: A C C



A trellis for the Forward Algorithm

Time

State

S
2 (0.9)(0.3)(0) (0.9)(0.7)(0.2) (0.9)(0.7)(0.222) _

] A r~ &
S2 is final state=» 15.5% probability of this sequence given this model was used



Probability of the model

* The Forward algorithm computes P(y|M)

* If we are comparing two or more models, we want the
likelihood that each model generated the data: P(M|y)

P(y I M)P(M)
P(y)

— Use Bayes' law: P(M | y) =

— Since P(y) is constant for a given input, we just need to
maximize P(y|M)P(M)



Three classic HMM problems

Decoding: given a model and an output
sequence, what is the most likely state sequence
through the model that generated the output?

A solution to this problem gives us a way to match
up an observed sequence and the states in the
model.

AAAGCATGCATTTAACGAGAGCACAAGGGCTCTAATGCCG

The sequence of states is an annotation of the generated string — each
nucleotide is generated in intergenic, start/stop, coding state



Three classic HMM problems

Decoding: given a model and an output
sequence, what is the most likely state sequence
through the model that generated the output?

A solution to this problem gives us a way to match
up an observed sequence and the states in the
model.

AAAGC ATG CAT TTAACG AGA GCACAA GGG CTC TAATGCCG

The sequence of states is an annotation of the generated string — each
nucleotide is generated in intergenic, start/stop, coding state



Solving the Decoding Problem:
The Viterbi algorithm

* To solve the decoding problem (find the most likely
sequence of states), we evaluate the Viterbi algorithm

0 @ t=0Ai=S,
V.(t)=< I : t=0Ai=3§,
max V (t-Dab,(y) : t>0

Where V(1) is the probability that the HMM is in state /
after generating the sequence y,,y,,...,y; following the
most probable path in the HMM



A trellis for the Viterbi Algorithm

-
Time
t=0 t=1 t=2 t=3
State '
S,

(0.9)(0.3)(0)

Output: A C C



A trellis for the Viterbi Algorithm

Time
t=0 t=1 t=2 t=3
S
State
S,

(0.9)(0.3)(0) (0.9)(0.7)(0.2)

Output: A C C



A trellis for the Viterbi Algorithm

Time
t=0 t=1 t=2 t=3
S »
State
S,

(0.9)(0.3)(0) (0.9)(0.7)(0.2

Output: A C C



A trellis for the Viterbi Algorithm

Time
t=0 t=1 t=2 t=3
S1 (0.6)(0.8)(1.0) (0.6)(0.2)(0.48) (0.6)(0.2)(0.0576)
max
»
’\
State S S
SA 2 &

S,

(0.9)(0.7)(0.126_

A P P
S2 is final state=» the most probable sequence of states has a 7.9% probability

(0.9)(0.3)(0) (0.9)(0.7)(0.2)



A trellis for the Viterbi Algorithm

Time
t=0 t=1 t=2 t=3
(0.6)(0.8)(1.0) (0.6)(0.2)(0.48) 6)(0.2)(0.
Sy 1.0 (0.6)(0.2)(0.0576)
max max max
Q)
S & G
QQ § NS
State S S S
SAZ SA =z s Az
.3 _3 \' \7%\
> % %o
~ % O
S max max ma
? 126 07938
(0.9)(0.3)(0) (0.9)(0.7)(0.2) &= (0.9)(0.7)(0.126)

Output: A C C
Parse: S1 S 2 S 2




Three classic HMM problems

Learning: given a model and a set of observed

sequences, how do we set the model’ s
parameters so that it has a high probability of
generating those sequences?

This is perhaps the most important, and most
difficult problem.

A solution to this problem allows us to determine
all the probabilities in an HMMSs by using an
ensemble of training data



Learning in HMMs:

* The learning algorithm uses Expectation-
Maximization (E-M)
— Also called the Forward-Backward algorithm
— Also called the Baum-Welch algorithm

* In order to learn the parameters in an “empty”
HMM, we need:

— The topology of the HMM
— Data - the more the better

— Start with a random (or naive) probability, repeat
until converges



