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1. Setup Docker/Ubuntu
2. Initialize Tools
3. Download Reference Genome & Reads
4. Decode the secret message

1. Estimate coverage, check read quality
2. Check kmer distribution
3. Assemble the reads with spades
4. Align to reference with MUMmer
5. Extract foreign sequence
6. dna-encode.pl -d

https://github.com/schatzlab/appliedgenomics2020/blob/mas
ter/assignments/assignment2/README.md

Assignment 2: Genome Assembly
Due Wednesday Feb 12 @ 11:59pm



Assignment 3: Due Wed Feb 19



Assignment 4: Due Wed Mar 4



Gene Models

• “Generic Feature Format” (GFF) records genomic features
– Coordinates of each exon
– Coordinates of UTRs
– Link together exons into transcripts
– Link together transcripts into gene models

http://www.sequenceontology.org/gff3.shtml



GFF File format
GFF3 files are nine-column, tab-delimited, plain text files
1. seqid: The ID of the sequence
2. source: Algorithm or database that generated this feature
3. type: gene/exon/CDS/etc…
4. start: 1-based coordinate
5. end: 1-based coordinate
6. score: E-values/p-values/index/colors/…
7. strand: “+’ for positive “-” for minus, “.” not stranded
8. phase: For "CDS", where the feature begins with reference 

to the reading frame (0,1,2)
9. attributes: A list of tag=value features

Parent: Indicates the parent of the feature (group 
exons into transcripts, transcripts into genes, …)



GFF Example

##gff-version 3
##sequence-region   ctg123 1 1497228       
ctg123 . gene 1000  9000  .  +  .  ID=gene00001;Name=EDEN

ctg123 . TF_binding_site 1000  1012  .  +  .  ID=tfbs00001;Parent=gene00001

ctg123 . mRNA 1050  9000  .  +  .  ID=mRNA00001;Parent=gene00001;Name=EDEN.1
ctg123 . mRNA 1050  9000  .  +  .  ID=mRNA00002;Parent=gene00001;Name=EDEN.2
ctg123 . mRNA 1300  9000  .  +  .  ID=mRNA00003;Parent=gene00001;Name=EDEN.3

ctg123 . exon 1300  1500  .  +  .  ID=exon00001;Parent=mRNA00003
ctg123 . exon 1050  1500  .  +  .  ID=exon00002;Parent=mRNA00001,mRNA00002
ctg123 . exon 3000  3902  .  +  .  ID=exon00003;Parent=mRNA00001,mRNA00003
ctg123 . exon 5000  5500  .  +  .  ID=exon00004;Parent=mRNA00001,mRNA00002,mRNA00003
ctg123 . exon 7000  9000  .  +  .  ID=exon00005;Parent=mRNA00001,mRNA00002,mRNA00003

ctg123 . CDS             1201  1500  .  +  0  ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
ctg123 . CDS             3000  3902  .  +  0  ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
ctg123 . CDS             5000  5500  .  +  0  ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
ctg123 . CDS             7000  7600  .  +  0  ID=cds00001;Parent=mRNA00001;Name=edenprotein.1

ctg123 . CDS             1201  1500  .  +  0  ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
ctg123 . CDS             5000  5500  .  +  0  ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
ctg123 . CDS 7000  7600  .  +  0  ID=cds00002;Parent=mRNA00002;Name=edenprotein.2

ctg123 . CDS             3301  3902  .  +  0  ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
ctg123 . CDS 5000  5500  .  +  1  ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
ctg123 . CDS 7000  7600  .  +  1  ID=cds00003;Parent=mRNA00003;Name=edenprotein.3

ctg123 . CDS             3391  3902  .  +  0  ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
ctg123 . CDS 5000  5500  .  +  1  ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
ctg123 . CDS 7000  7600  .  +  1  ID=cds00004;Parent=mRNA00003;Name=edenprotein.4

Gene “EDEN” with 3 alternatively 
spliced transcripts, isoform 3 has two 
alternative translation start sites



BEDTools to the rescue!



Plane Sweep to the Rescue!

How many comparisons does the plane sweep algorithm make?

Each read is compared to the “active set”

Relatively few exons overlap: average ~1.1 active exons/position

Total comparisons: 900M reads * 1.1 “active exons/read” = 990M comparisons J

Output is basically as fast as we can read the input data J



Machine Learning Primer 1:

Unsupervised Learning
aka Clustering



Clustering Refresher

Computational genetics: Computational analysis of microarray data
Quackenbush (2001) Nature Reviews Genetics. doi:10.1038/35076576

Euclidean Distance



Hierarchical Clustering
average

complete

single



Principle Components Analysis (PCA)

PC1: “New X”- The dimension with the most variability
PC2: “New Y”- The dimension with the second most variability



Principle Components Analysis (PCA)



Genes mirror geography within Europe
Novembre et al (2008) Nature. doi: 10.1038/nature07331

Genotype Matrix

P1 P2 P3 …
SNP1 0 1 0
SNP2 1 0 0
SNP3 0 0 2
…

0 = hom ref
1 = het ref/alt
2 = hom alt



PCA and t-SNE

t-distributed Stochastic Neighborhood Embedding
• Non-linear dimensionality reduction technique: distances are only locally meaningful
• Rather than Euclidean distances, for each point fits a Gaussian kernel to fit the nearest N 

neighbors (perplexity) that define the probabilities that two points should be close together
• Using an iterative spring embedding system to place high probability points nearby

Visualizing Data Using t-SNE
van der Maaten & Hinton (2008) Journal of Machine Learning Research. 9: 2579–2605.
https://www.youtube.com/watch?v=RJVL80Gg3lA
https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1

https://www.youtube.com/watch%3Fv=RJVL80Gg3lA
https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1


UMAP

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
McInnes et al (2018) arXiv. 1802.03426
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

https://www.youtube.com/watch%3Fv=nq6iPZVUxZU
https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668


Machine Learning Primer 2:

Hidden Markov Models



What is an HMM?
• Dynamic Bayesian Network

– A set of states
• {Fair, Biased} for coin tossing
• {Gene, Not Gene} for Bacterial Gene
• {Intergenic, Exon, Intron} for Eukaryotic Gene
• {Modern, Neanderthal} for Ancestry

– A set of emission characters
• E={H,T} for coin tossing
• E={1,2,3,4,5,6} for dice tossing
• E={A,C,G,T} for DNA

– State-specific emission probabilities
• P(H | Fair) = .5, P(T | Fair) = .5, P(H | Biased) = .9, P(T | Biased) = .1
• P(A | Gene) = .9, P(A | Not Gene) = .1 …

– A probability of taking a transition
• P(si=Fair|si-1=Fair) = .9, P(si=Bias|si-1 = Fair) .1
• P(si=Exon | si-1=Intergenic), …



Why Hidden?
• Observers can see the emitted symbols of an HMM (i.e., 

nucleotides) but have no ability to know which state the 
HMM is currently in (exon/intron/intergenic/etc).
– But we can infer the most likely hidden states of an HMM based on 

the given sequence of emitted symbols.

AAAGCATGCATTTAACGTGAGCACAATAGATTACAAAAGCATGCATTTAACGTGAGCACAATAGATTACA



HMM Example - Casino Coin

Fair Unfair

0.9 0.2

0.8

0.1

0.30.5 0.5 0.7

H HT T

State transition probs.

Symbol emission probs.

HTHHTTHHHTHTHTHHTHHHHHHTHTHH
Observation Sequence

FFFFFFUUUFFFFFFUUUUUUUFFFFFF State Sequence

Motivation: Given a sequence of H & Ts, can you tell at what times the casino cheated?

Observation Symbols

States

Slide credit: Fatih Gelgi, Arizona State U.



Three classic HMM problems

1. Evaluation: given a model and an output 
sequence, what is the probability that the model 
generated that output?

2. Decoding: given a model and an output 
sequence, what is the most likely state sequence 
through the model that generated the output?

3. Learning: given a model and a set of observed 
sequences, how do we set the model�s 
parameters so that it has a high probability of 
generating those sequences?



Three classic HMM problems

1. Evaluation: given a model and an output 
sequence, what is the probability that the model 
generated that output?

• To answer this, we consider all possible paths 
through the model

• Example: we might have a set of HMMs 
representing protein families -> pick the model with 
the best score



Solving the Evaluation problem: 
The Forward algorithm

• To solve the Evaluation problem (probability that the model 
generated the sequence), we use the HMM and the data to 
build a trellis

• Filling in the trellis will give tell us the probability that the 
HMM generated the data by finding all possible paths that 
could do it
– Especially useful to evaluate from which models, a given sequence 

is most likely to have originated



Our sample HMM

Let S1 be initial state, S2 be final state 



A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

+

+

0.48

0.20



A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

+

+

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

+

+

.0756

.222

.0576 + .018 = .0756

.126 + .096 = .222



A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

+

+

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

+

+

.0756

.222

(0.6)(0.2)(.0756)

(0.4)(0.5)(0.0756)

(0
.1)
(0
.9)
(0
.22
2)

(0.9)(0.7)(0.222)

+

+

.029

.155

.009072 + .01998 = .029052

.13986 + .01512 = .15498



A trellis for the Forward Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

+

+

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

+

+

.0756

.222

(0.6)(0.2)(.0756)

(0.4)(0.5)(0.0756)

(0
.1)
(0
.9)
(0
.22
2)

(0.9)(0.7)(0.222)

+

+

.029

.155

S2 is final stateè 15.5% probability of this sequence given this model was used



Probability of the model
• The Forward algorithm computes P(y|M)

• If we are comparing two or more models, we want the 
likelihood that each model generated the data: P(M|y)

– Use Bayes� law:

– Since P(y) is constant for a given input, we just need to 
maximize P(y|M)P(M)

€ 

P(M | y) =
P(y |M)P(M)

P(y)



Three classic HMM problems

2. Decoding: given a model and an output 
sequence, what is the most likely state sequence 
through the model that generated the output?

• A solution to this problem gives us a way to match 
up an observed sequence and the states in the 
model.

AAAGCATGCATTTAACGAGAGCACAAGGGCTCTAATGCCG

The sequence of states is an annotation of the generated string – each 
nucleotide is generated in intergenic, start/stop, coding state



Three classic HMM problems

2. Decoding: given a model and an output 
sequence, what is the most likely state sequence 
through the model that generated the output?

• A solution to this problem gives us a way to match 
up an observed sequence and the states in the 
model.

AAAGC ATG CAT TTA ACG AGA GCA CAA GGG CTC TAA TGCCG

The sequence of states is an annotation of the generated string – each 
nucleotide is generated in intergenic, start/stop, coding state



Solving the Decoding Problem: 
The Viterbi algorithm

• To solve the decoding problem (find the most likely 
sequence of states), we evaluate the Viterbi algorithm

Where Vi(t) is the probability that the HMM is in state i
after generating the sequence y1,y2,…,yt, following the 
most probable path in the HMM

€ 

Vi t( ) =

0 : t = 0∧ i ≠ SI
1 : t = 0∧ i = SI

maxV j (t −1)a jib ji(y) : t > 0

% 

& 
' 

( 
' 



A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

max 0.48

0.20
max



A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

.0576

.126

max(.0576,.018) = .0576

max(.126,.096) = .126
max

max



A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

.01134

.07938
max

max max

max

(0.6)(0.2)(0.0576)

(0.4)(0.5)(0.0576)

(0
.1)
(0
.9)
(0
.12
6)

(0.9)(0.7)(0.126)

.0576

.126max(.01152,.07938) = .07938

max(.006912,.01134) = .01134



A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

.01134

.07938
max

max max

max

(0.6)(0.2)(0.0576)

(0.4)(0.5)(0.0576)

(0
.1)
(0
.9)
(0
.12
6)

(0.9)(0.7)(0.126)

.0576

.126

S2 is final stateè the most probable sequence of states has a 7.9% probability



A trellis for the Viterbi Algorithm

State

1.0

0.0

S1

S2

Time
t=0 t=2 t=3t=1

Output: A CC

(0.6)(0.8)(1.0)

(0.4)(0.5)(1.0)

(0
.1)
(0
.1)
(0
)

(0.9)(0.3)(0)

max

max

0.48

0.20

(0.6)(0.2)(0.48)

(0.4)(0.5)(0.48)

(0
.1)
(0
.9)
(0
.2)

(0.9)(0.7)(0.2)

.01134

.07938
max

max max

max

(0.6)(0.2)(0.0576)

(0.4)(0.5)(0.0576)

(0
.1)
(0
.9)
(0
.12
6)

(0.9)(0.7)(0.126)

.0576

.126

Parse: S1 S2S2



Three classic HMM problems

3. Learning: given a model and a set of observed 
sequences, how do we set the model�s 
parameters so that it has a high probability of 
generating those sequences?

• This is perhaps the most important, and most 
difficult problem.

• A solution to this problem allows us to determine 
all the probabilities in an HMMs by using an 
ensemble of training data



Learning in HMMs: 

• The learning algorithm uses Expectation-
Maximization (E-M)
– Also called the Forward-Backward algorithm
– Also called the Baum-Welch algorithm

• In order to learn the parameters in an �empty�
HMM, we need:
– The topology of the HMM
– Data - the more the better
– Start with a random (or naïve) probability, repeat 

until converges


