Genome Arithmetic

Michael Schatz

==\

W
Feb 17,2020 @ b
Lecture 7: Applied Comparative Genomics y

Assignment 2: Genome Assembly
Due Wednesday Feb 12 @ | 1:59pm

Setup Docker/Ubuntu
Initialize Tools

Download Reference Genome & Reads

W=

Decode the secret message
Estimate coverage, check read quality
Check kmer distribution

Assemble the reads with spades

Align to reference with MUMmer
Extract foreign sequence
dna-encode.pl -d

o~ L AW N~

https://github.com/schatzlab/appliedgenomics2020/blob/mas
ter/assignments/assignment2/README.md

Assignment 3: Due Wed Feb |9

Assignment 3: Coverage, Genome Assembly, and Variant Calling

Assgrrvent Dune Wedresoey, Feb. 12, 2020
Out Dote: Weonesaay, Feb 10 2000 @ 1 55pm

Some of the 2000 you will nead 15 USe Only TUN N 3 BNUK O MAC eviepnment, ¥ pou G0 NSt Ve 300885 10 3 Inuumac machine, download and Inesall 3 virnual maching o Wbunty Instance
foliowing The deections here: NIDS 1 GThD COMY BRIt aly SEOMeagananmic 4 00 A D00 Mast BRSO Ot L Vit ahos g

ARSI, YOu Mg B0 wir! 5 Iry Ol Uss OOCer lance [hal Rt [hese 1000 preralaled: NI (TN Cormrachtt/ wob -esseslah

Question 1. Coverage simulator [10 pts)
s Qs How many WO0Ee reads are needed Lo secuence & TMSD genome 12 Sx coverage?

o Qb o the Inguage of your Chalce, Simulats Seauencing S Coverage of 3 TVRD Gename ang pIof 1he NNSISoram of COvVrage. Note you €0 1ot need 15 3cHally GUiput T Sequences of the
TOS, YOu CAN AL rangiomily SaTOM DOSTIONS I THE QENOME 3N3 NCONT T COVNIgR. You 30 NGt NESF 50 Conmiaer tThe strand of aach read. The s1art DOSTON of Aach read should hNawe »
U ranaom (roBatETy 8 400N DO SITING POWTON [TVoLgh BR0.S001, You Can Mo T COVINAgE N a0 amay of IN postions. Ovaviay the Nsogram with 3 Posson gatrbution
it larOcs.§

s Q'c. Uning the histogram bom 12, how much of the genome has not bees sequenced [hes Ox coveragel. Mow well Soos Tas match Polsacn sspectations?

o Q00 NOw repodt Ihe 200h5s with 15x Cowade: 1 Smuaie the SODO0 e furnler of rodds, 2. Mane » NSiogrn, 3 overiiy 2 Posson SSirDuton with Webas= 15 4 COmpune the Aumder
OF Dbt Wwih On COVEraDe. a5 5 ewiuited Now wel It SNNes [he POMson eupectation,

Question 2. de Bruijn Graph construction [10 pts)

o Q20 Deaw (ry hand o by code) e de Beuln graph for [he Slowng feedh useg =3 (sasume o reeds e from The formerd slrand, A0 30QUENCY errors, Corpiete Coverage o the
gerorre|

ATTCA
ATTEA
CArTS
oAy
SATTE
A Y

Personal Genomics

How does your genome compare to the reference!

Creates magical
wh technology
l l / Laser

So, with 30 tosses (reads), we are
much more likely to see an even mix
of alternate and reference alleles at a

heterozygous locus in a genome

il This is why at least a "30X"

S (30 fold sequence coverage)

genome is recommended: it
confers sufficient power to

. . distinguish heterozygous

alleles and from mere

8 DDDH HDDD sequencing errors

Number of experiments

Number of "tails" P(3/30 het) <?> P(3/30 err)

Thinking about allele sampling
with the binomial distribution

The binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent yes
(e.g., "heads" or "reference allele") or no (e.g., "tails", or "alternate allele")
experiments, each of which yields success with probability p.

The probability of getting exactly k successes in n trials is given by the probability
mass function:

n

Prx =) = () - o

What is the probability of seeing k=1 tails in n=3 flips of a fair coin with the
probability of a tail (p) = 0.5?

3 choose 1 =3;0.51=0.5; (1-0.5)3-1) =0.25. So.... 3*0.5*%0.25 = 0.375

In R, the function would be: dbinom(1, size=3, prob=0.5)

https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Probability

Variation Detection Complexity

SNPs + Short Indels

High precision and sensitivity

. . TTTAGAATAG-CGAGTGC. ..

AGAATAGGCGAG

“Long” Indels (>5bp)

Reduced precision and sensitivity

TTTAGAATAGGC |||]]
ATAGGCGAGTGC

1000 -7

00 -60 -20 20 60 10

900
800
700
600

500
400
300 -
200
100

0

—

200

1000 —
800 —
600 -
400 —

-1

100

True distribution

Indel size

GATK

60 20 20

Indel size

0

Sens: 48%
FDR: .38%

60

100

Analysis confounded by sequencing errors, localized repeats, allele biases, and mismapped reads

Scalpel: Haplotype Microassembly

DNA sequence micro-assembly pipeline for accurate
detection and validation of de novo mutations (SNPs,
indels) within exome-capture data.

Features -
J
I. Combine mapping and assembly K’
2. Exhaustive search of haplotypes /7
ﬁ//\/;.-,

e

3. De novo mutations

NRXN1 de novo SNP
(auSSC12501 chr2:50724605)

Accurate de novo and transmitted indel detection in exome-capture data using microassembly.
Narzisi et al. (2014) Nature Methods. doi:10.1038/nmeth.3069

Scalpel Algorithm

Extract reads mapping within the exon
including (1) well-mapped reads, (2) soft-
clipped reads, and (3) anchored pairs

>

— —>

>

%

—\—

O

Decompose reads into overlapping
k-mers and construct de Bruijn graph
from the reads

<

Find end-to-end haplotype paths
spanning the region

Align assembled sequences to
reference to detect mutations

deletion

\ 7
A4
\Y4
-

insertion

Refined indel analysis

Examine sources of indel errors

High Confidence INDELs

* Experimental validation of indels called from 30x whole [1633] [420
52.6% 13.5%

genome vs. | |0x whole exome of the same sample

e Most of the errors due to short microsatellite errors

!ntroduced during exome capture, also misses most long was: WES
indels Exact-match
* Recommend WGS for indel analysis instead
All Valid PPV INDELs Valid PPV
INDELSs >5bp (>5bp) (>5bp)
Intersection 160 152 95.0% 18 18 100%
WGS 145 122 84.1% 33 25 75.8%
WES 161 91 56.5% I I 100%

Reducing INDEL calling errors in whole-genome and exome sequencing data
Fang et al. Genome Medicine (2014) 6:89. doi:10.1186/s13073-014-0089-z

UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly

w Lo s 200min tha] e [13 e 20O™ CUt ke 3e | 00w | e

Mo wif w]a]w]]
at are C1T. 7,085 4167 £87 401 22078 B0. | wowr sownon s mevisst o o s]

-

‘...- N I
genome intervals? | = ey T ey
* Genetic variation: = ——— ~
— SNPs: Ibp § : : : §
— Indels: I-50bp SEEE——RtE ‘
— SVs:>50bp g ! 3 T

* Genes: = GHiEE :
— exons, introns, UTRs, promoters == : -

* Conservation U

« Transposons

* Origins of replication =

* TF binding sites =

 CpGislands :

* Segmental duplications

* Sequence alignments
* Chromatin annotations

* Gene expression data

e Your own observations and data:
put them into context!

Clrk Aam = st o lre Assle Clrk re Ares in s Roes Pow B Avwrle W0 2ranee.

BED Tools to the rescue!

Getting & Using BED Tools

-ww. - © 00 W oemoon apoeervimone x| o

Ban Bateh Sorpt Co ' « C O O Seciooks maIthesocs io/s et ad OO MA Nol. X-I

Sor Gmoon

MEBGrve oy Bl 0O v O o O B 45 2o Eape E3Wesa 0 ot) Remive N7 Coonimn (17 L2 Omar Bcamaes

bedtools: a powerful toolset for genome arithmetic

bedtools v2.280 » cmst ndex
m Collectively, the bedtools utiltes are a swiss-army knife of 100is for a wide-range of genomics
analysis tasks. The most widely-used tools enable genome anthvnebic: that is, set theory on the
genome, For example, bedtools alows ane to Infersect, mevge, count, complament, and shuffie
. genomic intervals from muliple files in widely-used genomic file formats such as BAM, BED,
GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g.,
ntersect two Interval files), gute sophisticated analyses can be conducted by combining multiple

:Integrated into IGV

“
; bedtools bedtools operations on the UNIX command ine.
vensd bedtools is developed in the Quinlan laboratory at the University of Utah and benefits from
Bediools is a fast, fexible
for ; fantastic contridutions made by scientists workdwide.
Bedtools links Tutorial
Issue Tracker
= @ GitHud We have developed a fairly comprehensive tutorial that demonstrates both the basics, as well as

Old Releases @ Google Code some more advanced exampies of how beciools can help you in your research. Ploase have 8
Mating list @ Google Groups fook.

Quevies § Biostar
Quinian isb @ UU Interesting Usage Examples
Sources In addion, here are a few examples of how bedtools has been used for genome research. ¥ you
Browsa sourca @ GitHub . have interesting examples, please send tham cur way and we will add them 10 the st
Releases » Coverage analysis for targeted DNA capture. Thanks 10 Stephen Tumer,
Stable reieases now @ Githud * Measuring similarity of DNase hypersansitivity among marny cell types
Extracting promoter sequences from a genome
This Page Companng inersacions among mary genome interval fies

idenstying targeted regions that lack coverage, Thanks to Brent Pedersen,
Calculating GC contert for CCDS exons.
Making a master table of ChromMMM tracks for muliple cell types.

Go (@ e
tosssneasasce. Tablpofcontents

Extensive Documentation and Examples

Show Source » RNA-seq coverage analysis. Thanks %o Erk Minikel.

Quick search

BED Format

BED (Browser Extensible Data) format provides a flexible way to define intervals.

The first three required BED fields are:

1.
2.

3.

chrom The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).
chromStart The starting position of the feature in the chromosome or scaffold. The first base in a sequence is numbered O.
chromEnd The ending position of the feature in the chromosome or scaffold.
The chromEnd base is not included in the display of the feature. For example, the first 100 bases of a
chromosome are defined as chromStart=0, chromEnd=100, and span the bases numbered 0-99.

The 9 additional optional BED fields are:

©CoOoOND R WN =

name - Defines the name of the BED line

score - A score between 0 and 1000

strand - Defines the strand. Either "." (=no strand) or "+" or "-".

thickStart - The starting position at which the feature is drawn thickly

thickEnd - The ending position at which the feature is drawn thickly (for example the stop codon in gene displays).
itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0).

blockCount - The number of blocks (exons) in the BED line.

blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to

chromStart. The number of items in this list should correspond to blockCount.

genes.bed has: chrom, txStart, txEnd, name, num exons, and strand
$ head -n4 genes.bed

chrl 134212701 134230065 Nuak2 8 it
chrl 134212701 134230065 Nuak2 7 +
chrl 33510655 33726603 Prim2, 14 -

chrl 25124320 25886552 Bai3, 31 -

BED Tools Intersect

A B =
> B | - [' :
<
58 : —
QD 4 A Infersest B
@
e —
- oy Alintersectb ; =)
= (-wa) : x| i 1
A intersect B =
-v)
What exons are hit by SVs? What parts of exons are hit by SVs?
$ cat A.bed $ cat A.bed
chrl 10 20 chrl 10 20
chrl 30 40 chrl 30 40
$ cat B.bed $ cat B.bed
chrl 15 20 chrl 15 20

$ bedtools intersect -a A.bed -b B.bed -wa $ bedtools intersect -a A.bed -b B.bed
chrl 10 20 chrl 15 20

BED Tools Merge
| |, i HE

Input (1)

merge | = =

merge | =

(-4 10) 32 =

merge |

(-n)
What parts of the genome are exonic? Note input must be sorted!
bedtools merge -1 exons.bed | head -n 20
iy 11873 12227 sort -k1,1 -k2,2n foo.bed > foo.sort.bed
chrl 12612 12721
chrl 13220 14829
chrl 14969 15038
chrl 15795 15947
chrl 16606 16765
chrl 16857 1755

A __A

- N

BED Tools Flank & getfasta

Input (1)
108p 108p
flank | 1 "
(5100
108p
flank | :
110
flank |

(5 1.0 -pet)

genes.bed has: chrom, txStart, txEnd, name, num exons, and strand
$ head -n4 genes.bed

chrl 134212701 134230065 Nuak2 8 b
chrl 134212701 134230065 Nuak?2 7 2l
chrl 33510655 33726603 Prim2, 14 -
chrl 25124320 25886552 Bai3, 31 -

Identify promoter regions (2kbp upstream)
$ bedtools flank -i genes.bed -g mm9.chromsizes -1 2000 -r 0 -s > genes.2kb.promoters.bed

Show promoter coordinates
$ head genes.2kb.promoters.bed

chrl 134210701 134212701 Nuak2 8 +
chrl 134210701 134212701 Nuak?2 7 T
chrl 33726603 33728603 Prim2, 14 -
chrl 25886552 25888552 Bai3, 31 -

Extract the sequences
$ bedtools getfasta -fi mm9.fa -bed genes.2kb.promoters.bed -fo genes.2kb.promoters.bed.fa

BED Tools Flank & getfasta

Input (1)
100p 108p
flank | ’
(5100
108p
flank |
110
flank |

(5 1.0 -pet)

genes.bed has: chrom, txStart, txEnd, name, num exons, and strand
$ head -n4 genes.bed

chrl 134212701 134230065 Nuak2 8 +
chrl 134212701 134230065 Nuak2 7 +
chrl 33510655 33726603 Prim2, 14 -
chrl 25124320 25886552 Bai3, 31 -

Identify promoter regions (2kbp upsticam)
$ bedtools flank -i genes.bed -g mm9.chromsizes -1 2000 -r 0 -s > genes.2kb.promoters.bed
—/

Show promoter coordinates Can also use the samtools faidx output
$ head genes.2kb.promoters.bed

chrl 134210701 134212701 Nuak?2 8 +

chrl 134210701 134212701 Nuak2 7 +

chrl 33726603 33728603 Prim2, 14 -

chrl 25886552 25888552 Bai3, 31 -

Extract the sequences
$ bedtools getfasta -fi mm9.fa -bed genes.2kb.promoters.bed -fo genes.2kb.promoters.bed.fa

default
A -
B ™ (o]

default
(with strands)
A [— /
B > <3

-0 ref
(signed dist.
w.r.t. genome)

& <=
De-2 D2
-t all
(in case of ties,
report all)
A vy
B = =

sultiple <b files

(-ndd each)
A -
Bl & a ‘/ o I &
B2 e ¢y @
B3 m] 0 os

BED Tools Closest

default
(w/ overlap)

@

-
=

(same strand)

v

=

[——=3
<=

(signed dist,

v

=

De-2

w.r. T, A's strand)

> /
<
0e2

-t all
(in case of ties,
report all)
y

= =3

sultiple -b files
(-=db all)

® Vv
£

S L) -iu
(ignore overlaps) (ignore upstream)
v, -
] =3 © (=]
-5 -d

(opposite strand) (distance)
-_— -
= <= (5] dez ==
-0 a Db
(sigmned dist, (signed dist.
w.r. T, A's strand) w.r.t. B's strand)
v, . e A ¢
= <= = <=0
[De-2 De2 Dw2
«t first
(in case of ties,
report first hit in file)
y
a (5]
-k nearest features
(-k 2 -»db ecach)
y, =
o m m/ B e 7 (5]
(s ® J/ vyam
L (] sa]

-id
(ignore downstreas)
/'

= [S)

-d
(distance)
v, ==

5 05 =3

Db

(signed dist.
w.r.t. B's strand)

V/ <= V/
<=0 =
Des2 D=2

«t last
(in case of ties,
report last hit in file)
-
0 =

«k nearest features
(-k 2 -mdb all)
| =] V/
3] a0 |
2 J/ =
= i)

BED Tools commands

annotate getfasta overlap
bamtobed groupby pairtobed
bamtofastq groupby pairtopailr
bedl2tobedb 1gv random
bedpetobam intersect reldist
bedtobam jaccard shift
closest links shuffle
cluster makewindows slop
complement map sort
coverage maskfasta subtract
expand merge tag

flank multicov unionbedg
fisher multiinter window
genomecov nuc

http://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html

BED Tools Performance

S5 C) 3
tl E2 e E3
Exons #’ ' ' # ’ #
Sequence v i v o S - S o 0 o (A (AL
alignments LA] [Ae]] Al
a2]

How many reads are aligned to exonic sequences?

$ awk '{if ($3=="exon"){print}}' gencode.v2l.annotation.gff3 | wc -1
1162114

if ((read.start <= exon.end) && (read.end >= exon.start)) { print “in exon!”; }

How many comparison would a brute force approach take to scan a 30x dataset?
30x3Gb = 90Gbp / 100bp reads = 900M reads
900M reads x 1.1M exons = 990MM comparisons! ®

Coverage across the genome

~1000

D W00 OO0 158000 XC00)

$ head -3 ~/readid.start.stop.txt
1 0 19814

2 799 19947

3 1844 13454

$ tail -3 ~/readid.start.stop.txt
1871 973590 965902
1872 966703 973521
1873 973632 966946

Coverage across the genome

s

X0

-

%

~1000

D OO0 JOCOO) 158000 KOO0) JO00C

print "Plotting layout"”

draw the layout of reads

for i in xrange(min(MAX_ READS LAYOUT, len(reads))):
r = reads[i]
readid = r[0)

:tgrt - r:;} p r[1] is start pos
n - .

rc = r(3] r[2] is end pos
color = "blue”

if (rc == 1):
color = "red"

plt.plot ([start,end], [-2*i, -2*i], lw=4, color=color)

Brute Force Coverage Profile

print "Brute force computing coverage over %d bp" % (totallen)

starttime = time.time()
brutecov = [0] * totallen

for r in reads:
print " -- [8%8d, 8d]" 8 (r[1], r[2])

for i in xrange(r[l], r[2]): —
brutecov[i] += 1

brutetime = (time.time() - starttime) * 1000.0

print " Brute force complete in %0.02f ms" % (brutetime)
print brutecov([0:10)

Brute force computing coverage over 973898 bp
Brute force complete in 4435.00 ms
(, 1,1,1,1,1,1,1,1, 1]

Notice that it took 4435 ms for this to complete

Delta Encoding
aka run length encoding

deltacov = []
curcov = -1
for i in xrange(0, len(brutecov)):
if brutecov[i]) != curcov: «—
curcov = brutecov([i]
delta = (i, curcov)
deltacov.append(delta)

Finish up with the last position
deltacov.append((totallen, 0))

Delta encoding coverage plot

Delta encoding required only 3697 steps, saving 99.62% of the space in 151.32 ms
0: [0,1)
l: [799,2)
2: [1844,3)

3694: [973770,2)
3695: [973779,1)
3696: [973898,0)

Plot Coverage and Read Positions

expand the coverage profile by this amount so that it is easier to see
YSCALE = 5

draw the layout of reads

for i in xrange(min(MAX_READS_ LAYOUT, len(reads))):
r = reads(i)
readid = r([0)

start = r(l]
end = r(2)
rc = r(3]
color = “blue”

if (xrc == 1):
color = "red"

plt.plot ([start,end], [-2*i, -2*i], lw=4, color=color) _

draw the base of the coverage plot
plt.plot([0, totallen], [0,0], color="black")

draw the coverage plot
for i in xrange(len(deltacov)-1):
x1 = deltacov([i][0]
x2 = deltacov([i+1]([0)
yl = YSCALE*deltacov[i][1l]
y2 = YSCALE*deltacov[i+l][1)]

draw the horizonal line

plt.plot(([xl, x2], [yl, yl], color="black")

_
and now the right vertical to the new coverage level
plt.plot([x2, x2), (yl, y2), color="black")

-lmo

00N

Plot Coverage and Read Positions

expand the coverage profile by this amount so that it is easier to see
YSCALE = 5

draw the layout of reads

for i in xrange(min(MAX_READS_ LAYOUT, len(reads))):
r = reads(i)
readid = r(0)
start = r(l]

end = r(2)
rce = r(3]
color = “blue”

if (xc == 1):
color = "red"

plt.plot ([start,end], [-2*i, -2*i], lw=4, color=color) . _

draw the base of the coverage plot
plt.plot([0, totallen], [0,0], color="black")

draw the coverage plot
for i in xrange(len(deltacov
x1 = deltacov([i][0]
x2 = deltacov([i+1](0)
yl = YSCALE*deltacov([i][1l
y2 = YSCALE*deltacov[i+l][

draw the horizonal line

plt.plot([x1, x2], [yl, yl], color="black")

—
and now the right vertical to the new coverage level
plt.plot(([x2, x2), [(yl, y2], color="black")

A0

Plane Sweep

The basic algorithm works like this:
« Assume layout is in sorted order by start position (or explicitly sort by start position)

« use a ‘list” to track how many reads currently intersect the plane keyed by end coord
« the number of elements in the list corresponds to the current depth

« walking from start position to start position
« check to see if we past any read ends
« coverage goes down by one when a read ends
* coverage goes up by one when new read is encountered

Plane Sweep

arrive at r1 [1,30]:
active set is empty; add to active set: 30
output (1,1)

Plane Sweep

12
arrive at r1 [1,30]:

active set is empty; add to active set: 30
output (1,1)

arrive at r2 [5,25]:
5 < 30: add to active set: 25, 30 <- notice insert at beginning of active set
output (5, 2)

Plane Sweep

1 2 3
arrive at r1 [1,30]:

active set is empty; add to active set: 30
output (1,1)

arrive at r2 [5,25]:
5 < 30: add 25 to active set: 25, 30 <- notice insert at beginning of active set
output (5, 2)

arrive at r3 [10,45]:
10 < 25; add 45 to active set: 25, 30, 45 <- add to end of active set
output (10, 3)

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | |
rl . :[e e e e]
r2 e E ——r 3+ + 5+ F § 3 F 3+ 5 F 5]
r3 e :[— >+ + + + + + + + + F+ + + F + + F + =+ F T]
ri: I === =====—=====—===]
r5 . [3 3 F 3 3+ 3 1]
1 2 3 4
arrive at r3 [10,45]:

10 < 25; add 45 to active set: 25, 30, 45 <- add to end of active set
output (10, 3)

arrive at r4 [20,40]:

20 < 25; add 40 to active set: 25, 30, 40, 45 <- out of order again
output (20, 4)

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50
pos: | | | | | ; | | | | |
rl . :[e e e]
r3 e :[— 3+ T]
rd: I =E===m=m=============]
1 2 3 4 3
arrive at r5[35,595]:

35 > 25: step down at 25; active set: 30, 40, 45
output (25, 3)

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50

pos: | | | | | ; | | | | |

r]. . :[—3+ + -+ * * F ¢+ * F ¥ ¥+ F v F % P F]

r3: :[=== ===]

ri: [===================]

r5: [=== ==—=—====—===
1 2 3 4 3 2

arrive at r5[35,595]:

35 > 25: step down at 25; active set: 30, 40, 45
output (25, 3)

35 > 30: step down at 30; active set: 40, 45
output (30, 2)

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50
pos: | | '| | '| ;] | | |
r]. . :[—3+ + -+ * * F ¢+ * F ¥ ¥+ F v F % P F]
r3: :[=== —————————]
ri: [===================]
r5: [=== ==—=—====—===
1 2 3 4 3 2 3
arrive at r5[35,595]:

35 > 25: step down at 25; active set: 30, 40, 45
output (25, 3)

35 > 30: step down at 30; active set: 40, 45
output (30, 2)

35 < 40: add 55 to active set: 40, 45, 55
output (35, 3)

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50 55

Flush: 40, 45, 55

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50 55

Flush: 40, 45, 55

step down at 40; active set: 45, 55
output (40, 2)

Plane Sweep

pos: 1 5 10 15 20 25 30 35 40 45 50

Flush: 40, 45, 55

step down at 40; active set: 45, 55
output (40, 2)

step down at 45: active set: 55
output (45, 1)

Plane Sweep

pos: 1 5 10 15 20 25 30

Flush: 40, 45, 55

step down at 40; active set: 45, 55
output (40, 2)

step down at 45: active set: 55
output (45, 1)

step down at 55: active set: {}
output (55, 0)

35 40 45 50 55

Plane Sweep

record the delta encoded depth using a plane sweep
deltacovplane = [)

use a list to record the end positions of the elements currently in plane
planelist = []

BEGIN SWEEP

for r in reads:
startpos = r[l}]
endpos - r(2)

clear out any positions from the plane that we have already moved past
while (len(planelist) > 0):

if (planelist([0] <= startpos):
the coverage steps down, extract it from the front of the list
oldend = planelist.pop(0)
deltacovplane.append((oldend, len(planelist)))
else:
break

Now insert the current endpos into the correct position into the list
insertpos = -1
for i in xrange(len(planelist)):
if (endpos < planelist{i]):
insertpos = i
break

if (insertpos > 0):
planelist.insert(insertpos, endpos)
else:

planelist.append{endpos)

FPinally record that the coverage has increased
deltacovplane.append((startpos, len(planelist)))

#¢ Flush any remaining end positions

while (len(planelist) > 0):
oldend = planelist.pop(0)
deltacovplane.append((oldend, len(planelist)))

““““““““““\
““““““““““\
“““““““““““‘\

Beginning list-based plane sweep over 1873 reads

Plane sweep found 3746 steps, saving 99.62% of the space in 48.90 ms (90.69 speedup)!

Plane Sweep

record the delta encoded depth using a plane sweep
deltacovplane = [)
use a list to record the end positions of the elements currently in plane ‘_
planelist = []
BEGIN SWEEP
for r in reads:
startpos = r[l}]

endpos - r(2)
clear out any positions from the plane that we have already moved past
while (len(planelist) > 0):
if (planelist[0] <= startpos):
the coverage steps down, extract it from the front of the list ‘_
oldend = planelist.pop(0)

planelist.append({endpos)

Finally record that the coverage has increased
deltacovplane.append((startpos, len(planelist)))

#¢ Flush any remaining end positions

while (len(planelist) > 0):
oldend = planelist.pop(0)
deltacovplane.append((oldend, len(planelist)))

Beginning list-based plane sweep over 1873 reads
Plane sweep found 3746 steps, saving 99.62% of the space in 48.90 ms (90.69 speedup)!

Plane Sweep

record the delta encoded depth using a plane sweep
deltacovplane = [)
#¢ use a list to record the end positions of the elements currently in plane ‘—
planelist = [])
BEGIN SWEEP
for r in reads:
startpos = r[l}]

endpos - r(2)

clear out any positions from the plane that we have already moved past
while (len(planelist) > 0):
if (planelist([0] <= startpos):
the coverage steps down, extract it from the front of the list ‘_
oldend = planelist.pop(0)
deltacovplane.append((oldend, len(planelist)))
else:
break

Now insert the current endpos into the correct position into the list
insertpos = -1
for i in xrange(len(planelist)):

if (endpos < planelist{i]):

insertpos = i
break
if (insertpos > 0):
planelist.insert(insertpos, endpos) —
else:
planelist.append{endpos)
#¢# Finally record that the coverage has increased

deltacovplane.append((startpos, len(planelist)))

#¢ Flush any remaining end positions

while (len(planelist) > 0):
oldend = planelist.pop(0)
deltacovplane.append((oldend, len(planelist)))

Beginning list-based plane sweep over 1873 reads
Plane sweep found 3746 steps, saving 99.62% of the space in 48.90 ms (90.69 speedup)!

Heaps & Priority Queues

Binary Min Heap: Binary tree such that
the value of a node is less than or equal
to the value of its 2 children

Similar to a binary search tree, although
there are no guarantees about the
relationships of the left and right children

Very efficient data structure for dynamically maintaining a set of element while
allowing you to find the minimum (or maximum) very fast:

Insert: O(Ig(n)) <- super fast
Remove: O(Ig(n)) <- super fast
Find-min: O(1) <- instantaneous

Key to fast performance derives from heap shape property: the tree is guaranteed
to be a complete binary tree, meaning it will remain balanced and the height will
always be log(n)

Binary Heaps

Shape Property:
Complete binary tree with every level full, except potentially the bottom level,
AND bottom level filled from left to right

£a8r &£

Valid Valid

AN A0K

Invalid Invalid

Min Binary Heaps

800 33220
Valid Valid
2
TN
4 8 3
7 15/\20 7 N\
1 8 42 3
/\ /
800 332

Invalid Invalid

Min Binary Heaps

2
1 8/ \3
4/ \8 /1{ \/20 42/ \3

800 33220

What does the shape property imply about the height of the tree?
Guaranteed to be Ign ©

What does the ordering property imply about the root of the tree?

Guaranteed min (or max) value will be in the root node

That’s interesting, | wonder if we could use this for a priority queue...

... just need to efficiently insert() and removeTop()

Inserting into a binary heap

Insert the elements 2, 4, 7, 3

null 2 2 2 2 2

i(2) i(4) i(7) i(3)

The shape property tells us that we need to fill one level at a time, from left to

right. So the number of elements in a heap uniquely determines where the
next node has to be placed.

What about the ordering property? \When we insert 3, the parent 4 so the

ordering property is violated. There’'s an easy fix however, just swap the
values!

Note that in general, we may need to keep swapping “up the tree” as long
as the ordering property is still violated. But since there are only log n levels,
this can take at most O(log n) time in the worst case.

Remove top from a binary heap

Remove the top

2 7 4 7 /
/ \ y / 1\ /
7 4 10 10 4 10
/ /
10 ERROR: ERROR: * ERROR:
2 trees 4<7 Shape Violation
Any ideas?
10 10 4
1.Swap / \ 2.Remove / \ 3. Swap down / \
last 7 4 last 7 4 from root with 7 10
/ smaller child
2

Note that in general, we may need to keep swapping “down the tree” as
long as the ordering property is still violated. But since there are only log n
levels, this can take at most O(log n) time in the worst case.

Heap Implementation

We could implement a heap as a tree with references, but those
references take up a lot of space and are relatively slow to resolve

Lets encode the tree inside an array!

/a\

®
—+‘
1Q

PAVRVAN .
h/ \i / SIS L~ /7

J

Encoding a complete tree into the array in level order
puts the children and parent in predictable locations
(Math is easier if the array starts at 1 instead of 0)

Parent(i) = array][i/2]
Parent(f) = parent(6) = array[6/2] = array[3] = ¢

left(i) = array[i*2] & right(i) = array[i*2+1]
left(3) = array[3"2] = array[6] =f & right(3) = array[3"2+1] = array[7] = ¢

Heaps In Python

L R Ll
O O & Ao hmes Fase e . pyee ey - r 2B a» . .9
MBI B B O YO B DD % i s D . et T e e Smarese

PR+ © = w Pyt Barvied ewy + B Dwin “opes WPTRAS e swullme v
Tadke Of Corerta 8.4. heapg — Heap queve algorithm
: M & sl T2

Bawme vede e

e swniie o > - o e ey e BT wa e an P e by g gy e

PN A Dy T B St SV DR Ao N & VRS SRS TN OF S0 10 % oF B CPAen, TS ITERTEIIEON G T R ARRON e s e e TR O b b oo e T e o 4 oo
Pt S s Vi Pw wne A St mr r amalony et ey vt el O Le Aehe T rheatlog ey Ty 8 T O atend swred 4 Ween Te ool e 1

TR A b SR ST MEBes YeAD SQIETYTR A e MEOT M A e e Daset viee g THA Taaes e aAereng Detenen T Sl TF 8 WOW AW T et MY M TRERSS MgPVy B WA Dt 8 moes
S0 e Pymen aen - 0netd Aoeeng B OhF 0§ ST WA T IR AT T TN WD JOANT & TR SAD" M BRIDOORE & T TR’ 8 MW JDTVRGA I R DROR I TN RDARy N o ghaoe
ey

™ P
_ Thenn s mate | panivn v B baag 40 8 rmpaw P W wTRnS Bopraen sy v 8 P analadh e ol vy i re e

T O D A N ODRE N O g DN TR & JUOUNORT W N A D W ATION s
Quichk saarch

ettt

e e e v e

T Nvm g Lntera e et

e Bagpesn wap A
R et Poah T woim fen b Tw ‘mays wawdarwny Te ey rew it
wers Boappey “wat

PG 0 WA Te eTavd B YOA Ty New Py P Al T T el ¢ OO e wo Wt W AU T S e ST POPENG L A s 4

e Beappesagay ‘wan e
PA0 B 00 T Teah. T K W W T WA B Sum T i TN COMDNE BOROF N O PROETY TR e e NOAOwE Dy § MO T8 X s

New » e J 4

. Beagty -
Tiawhow e Ty e P e e

e Beaprepisen twa S
P00 AN 0N T St T TN T Nl 4 B0 AR T fee B Th0 Nl Me 0N INAGE T T T & STON naar e B L

™ e oy w . mow o ol " At e e O e et g b et s reap TR R TRt eT Gy WA Wt et e e ey v
et | o™ Apn

The vebvm whand may e wrge Dan B Sew sl T Bt o .y Mt e b wbs whoe Pe wvater o Pa e sean savey Pe g vwea o T ey
The FODE SR YRS TV SR Done AR Jeed OF SAgR

cres @pwye A aCees
Mg = AQe wvwmd Aguie mie 5 A 08 e g Sy T —_e S e T R e I i I)

BN 0 e armn et ememan D WG W DM 004 N P T 0RO P ROny M OR8N T A0 M T SOU TR 4 WTAAN 200 [etaeE 1 e

e & e 0 4

s Slatgeen [t Sorvmed anv)

Heap-based Plane-Sweep

record the delta encoded depth using a plane sweep
deltacovplane = []

use a list to record the end positions of the elements currently in plane _
plancheap = []

BEGIN SWEEP (note change to index based so can peek ahead)

for rr im xrange(len(reads)):

r = reads{rr]
startpos = r(l]
endpos = r(2]

#¥ clear out any positions from the plane that we have already moved past
while (len(planeheap) > 0):

the coverage steps down, extract it from the froant of the list

oldend = planelist.pop(0)
oldend = heapq.heappop(planeheap)

nextend = -1
if (len(planeheap) > 0):
nextend = planeheap(0)

#¢ only record this transition if it is not the same as a start pos
and only if not the same as the next end point
if ((oldend !+ startpos) and (oldend |+ nextend)):
deltacovplane.append((cldend, len(planeheap)))
else:
break

#7 Now insert the current endpos into the correct position into the list
heapq.heappush(planeheap, endpos)

Finally record that the coverage has increased
But make sure the current read does not start at the same position as the next
if ((rr == len(reads)-1l) or (startpos |= reads{rr+lj[1])):

deltacovplane.append((startpos, len(planeheap)))

#¥ if it is at the same place, it will get reported in the next cycle

Flush any remaining end positions

while (len(planeheap) > 0):
#¥oldend = planelist.pop(0)
oldend = heapq. ppop (planeheap)
deltacovplane.append((ol len

Beginning heap-based plane sweep over 1873 reads
Heap-Plane sweep found 3698 steps, saving 99.62% of the space in 14.26 ms (311.08 speedup)!

BED Tools Performance

S5 C) 3
tl E2 e E3
Exons #’ ' ' # ’ #
Sequence v i v o S - S o 0 o (A (AL
alignments LA] [Ae]] Al
a2]

How many reads are aligned to exonic sequences?

$ awk '{if ($3=="exon"){print}}' gencode.v2l.annotation.gff3 | wc -1
1162114

if ((read.start <= exon.end) && (read.end >= exon.start)) { print “in exon!”; }

How many comparison would a brute force approach take to scan a 30x dataset?
30x3Gb = 90Gbp / 100bp reads = 900M reads
900M reads x 1.1M exons = 990MM comparisons! ®

Plane Sweep to the Rescue!

El E2 E3
Exons M
Sequence AT (A0 5] (%] Cae] Can)
algnments &) 2])

Sweep Line

Plane Sweep to the Rescue!

. El E2 E3
Exons ?.......'I.""/~\\\1llllllI‘...——"""‘—~“—“‘—-'.......|..._
Sequence . B 80T &0 Ca]) (&) Caig] Car]
alignments Ca] [CA] [aiz]

Start of E1
El is active

{E1}

Plane Sweep to the Rescue!

: El E2 E3
alignments : Ea] Ca] [aiz]

Al overlaps El

{E1=(Al)}

Plane Sweep to the Rescue!

 El E2 E3
alignments [Il Ca] [Aiz]

A2 overlaps El

{El=(Al, A2)}

Plane Sweep to the Rescue!

El ¢ E2 E3
Sequence A e [A @] (3] (&)
alignments Cal: [Eggg] AT

A3 overlaps El

{E1=(Al, A2, A3)}

Plane Sweep to the Rescue!

El : E2 E3
Sequence A S [A @] (3] (&)
alignments Ca] : [CAe] a])
&)
End of E1
Report:

{E1=(Al, A2, A3)}

Plane Sweep to the Rescue!

El : E2 E3
Sequence A e [A @] (3] (&)
alignments w-u I 2] Wy
o
A4 starts,

but nothing is active

Plane Sweep to the Rescue!

El : E2 E3
Sequence A e [A @] (3] (&)
alignments Ca] S T (Az]
&)
A4 end,

but nothing is active

Plane Sweep to the Rescue!

E'I P . EE0 E3
Sequence A [Enm S &) [®]) (3] (&)
alignments . [AiT)

E2 starts

{E2}

Plane Sweep to the Rescue!

El - B2 E3
alignments Ca] [z] Az

A5 overlaps E2

{E2=(A5)}

Plane Sweep to the Rescue!

EII ~ E2 s E3
Sequence Al A0 =0 Ca] &0 Caie] (A
alignments CA] AiT)

Plane Sweep to the Rescue!

El E2 E3 E
Sequence CA] A0 8] [=7] Lag] LA
alignments CA] AiT)

E3 Ends

Plane Sweep to the Rescue!

El E2 E3
Sequence CAT] (80T [OCF] A7) (&) Caie] Can]
alignments CA] AiT)

All done!

Plane Sweep to the Rescue!

5 C _,):3
E | E2 __/_‘ E3
Sequence CAT] (A0w] [C8] Ca] [»]] &
alignments Ca] 4]]

Final Results:

El=(Al,A2,A3)
E2=(A5,A6,A7)
E3=(Al0,Al2,All)

Plane Sweep to the Rescue!

S'e >3
El E2 e

Sequence (A] [(A])fa] [8] (A] (&) Ee] AR

alignments LA] &) Az]
| Al

How many comparisons does the plane sweep algorithm make?
Each read is compared to the “active set”

Relatively few exons overlap: average ~1.1 active exons/position

Total comparisons: 900M reads * 1.1 “active exons/read” = 990M comparisons ©

Output is basically as fast as we can read the input data ©

BED Tools Performance

? bedtools v 80 minutes
1000- .
60X
"%‘ i bedtools v2.17 5.5 minutes
£ :
§ 100- bedops v2.3 95 seconds
j; ¥ bedtools v2.18 80 seconds
E
-—
©
=
10.
1 . . »
1M record 10M record 100M record
BAM BAM BAM

bedtools intersect -a gencode.exons.bed -b exome.bam -sorted -c
bedmap --echo --count gencode.exons.bed exose.bam

Next Steps

|. See Lecture Notes for Full Details

2. Review Bedtools docs: http://bedtools.readthedocs.io/

3. Finish Assignment 3

http://bedtools.readthedocs.io/

