
Genome Arithmetic
Michael Schatz

Feb 17, 2020
Lecture 7: Applied Comparative Genomics

1. Setup Docker/Ubuntu
2. Initialize Tools
3. Download Reference Genome & Reads
4. Decode the secret message

1. Estimate coverage, check read quality
2. Check kmer distribution
3. Assemble the reads with spades
4. Align to reference with MUMmer
5. Extract foreign sequence
6. dna-encode.pl -d

https://github.com/schatzlab/appliedgenomics2020/blob/mas
ter/assignments/assignment2/README.md

Assignment 2: Genome Assembly
Due Wednesday Feb 12 @ 11:59pm

Assignment 3: Due Wed Feb 19

Personal Genomics
How does your genome compare to the reference?

Heart Disease

Cancer

Creates magical
technology

So, with 30 tosses (reads), we are
much more likely to see an even mix
of alternate and reference alleles at a

heterozygous locus in a genome

Number of "tails"

N
um

be
r o

f e
xp

er
im

en
ts This is why at least a "30X"

(30 fold sequence coverage)
genome is recommended: it
confers sufficient power to
distinguish heterozygous

alleles and from mere
sequencing errors

P(3/30 het) <?> P(3/30 err)
2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28

0e
+0
0

1e
+0
5

2e
+0
5

3e
+0
5

4e
+0
5

Thinking about allele sampling
with the binomial distribution

The binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent yes
(e.g., "heads" or "reference allele") or no (e.g., "tails", or "alternate allele")
experiments, each of which yields success with probability p.

The probability of getting exactly k successes in n trials is given by the probability
mass function:

What is the probability of seeing k=1 tails in n=3 flips of a fair coin with the
probability of a tail (p) = 0.5?
3 choose 1 = 3; 0.51 = 0.5; (1-0.5)(3-1) = 0.25. So…. 3*0.5*0.25 = 0.375

In R, the function would be: dbinom(1, size=3, prob=0.5)

https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Probability

Variation Detection Complexity

Analysis confounded by sequencing errors, localized repeats, allele biases, and mismapped reads

..TTTAGAATAG-CGAGTGC...
||||||| ||||
AGAATAGGCGAG

|||||
|||||

ATAGGCGAGTGC

..TTTAG--------AGTGC...
|||||
TTTAGAATAGGC

SNPs + Short Indels
High precision and sensitivity

“Long” Indels (>5bp)
Reduced precision and sensitivity

Sens: 48%
FDR: .38%

Scalpel: Haplotype Microassembly
DNA sequence micro-assembly pipeline for accurate
detection and validation of de novo mutations (SNPs,
indels) within exome-capture data.

Features

1. Combine mapping and assembly

2. Exhaustive search of haplotypes

3. De novo mutations
NRXN1 de novo SNP

(auSSC12501 chr2:50724605)

Accurate de novo and transmitted indel detection in exome-capture data using microassembly.
Narzisi et al. (2014) Nature Methods. doi:10.1038/nmeth.3069

Scalpel Algorithm

deletion insertion

Extract reads mapping within the exon
including (1) well-mapped reads, (2) soft-
clipped reads, and (3) anchored pairs

Decompose reads into overlapping
k-mers and construct de Bruijn graph
from the reads

Find end-to-end haplotype paths
spanning the region

Align assembled sequences to
reference to detect mutations

Refined indel analysis

Reducing INDEL calling errors in whole-genome and exome sequencing data
Fang et al. Genome Medicine (2014) 6:89. doi:10.1186/s13073-014-0089-z

Examine sources of indel errors
• Experimental validation of indels called from 30x whole

genome vs. 110x whole exome of the same sample
• Most of the errors due to short microsatellite errors

introduced during exome capture, also misses most long
indels

• Recommend WGS for indel analysis instead

All
INDELs

Valid PPV INDELs
>5bp

Valid
(>5bp)

PPV
(>5bp)

Intersection 160 152 95.0% 18 18 100%

WGS 145 122 84.1% 33 25 75.8%

WES 161 91 56.5% 1 1 100%

What are
genome intervals?
• Genetic variation:

– SNPs: 1bp
– Indels: 1-50bp
– SVs: >50bp

• Genes:
– exons, introns, UTRs, promoters

• Conservation
• Transposons
• Origins of replication
• TF binding sites
• CpG islands
• Segmental duplications
• Sequence alignments
• Chromatin annotations
• Gene expression data
• …
• Your own observations and data:

put them into context!

BEDTools to the rescue!

Getting & Using BEDTools

Extensive Documentation and Examples

BED Format

genes.bed has: chrom, txStart, txEnd, name, num_exons, and strand
$ head -n4 genes.bed
chr1 134212701 134230065 Nuak2 8 +
chr1 134212701 134230065 Nuak2 7 +
chr1 33510655 33726603 Prim2, 14 -
chr1 25124320 25886552 Bai3, 31 -

BED (Browser Extensible Data) format provides a flexible way to define intervals.

The first three required BED fields are:
1. chrom The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).
2. chromStart The starting position of the feature in the chromosome or scaffold. The first base in a sequence is numbered 0.
3. chromEnd The ending position of the feature in the chromosome or scaffold.

The chromEnd base is not included in the display of the feature. For example, the first 100 bases of a
chromosome are defined as chromStart=0, chromEnd=100, and span the bases numbered 0-99.

The 9 additional optional BED fields are:
1. name - Defines the name of the BED line
2. score - A score between 0 and 1000
3. strand - Defines the strand. Either "." (=no strand) or "+" or "-".
4. thickStart - The starting position at which the feature is drawn thickly
5. thickEnd - The ending position at which the feature is drawn thickly (for example the stop codon in gene displays).
6. itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0).
7. blockCount - The number of blocks (exons) in the BED line.
8. blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
9. blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to

chromStart. The number of items in this list should correspond to blockCount.

BEDTools Intersect

What exons are hit by SVs? What parts of exons are hit by SVs?

BEDTools Merge

What parts of the genome are exonic? Note input must be sorted!

BEDTools Flank & getfasta

genes.bed has: chrom, txStart, txEnd, name, num_exons, and strand
$ head -n4 genes.bed
chr1 134212701 134230065 Nuak2 8 +
chr1 134212701 134230065 Nuak2 7 +
chr1 33510655 33726603 Prim2, 14 -
chr1 25124320 25886552 Bai3, 31 -

Identify promoter regions (2kbp upstream)
$ bedtools flank -i genes.bed -g mm9.chromsizes -l 2000 -r 0 -s > genes.2kb.promoters.bed

Show promoter coordinates
$ head genes.2kb.promoters.bed
chr1 134210701 134212701 Nuak2 8 +
chr1 134210701 134212701 Nuak2 7 +
chr1 33726603 33728603 Prim2, 14 -
chr1 25886552 25888552 Bai3, 31 -

Extract the sequences
$ bedtools getfasta -fi mm9.fa -bed genes.2kb.promoters.bed -fo genes.2kb.promoters.bed.fa

BEDTools Flank & getfasta

genes.bed has: chrom, txStart, txEnd, name, num_exons, and strand
$ head -n4 genes.bed
chr1 134212701 134230065 Nuak2 8 +
chr1 134212701 134230065 Nuak2 7 +
chr1 33510655 33726603 Prim2, 14 -
chr1 25124320 25886552 Bai3, 31 -

Identify promoter regions (2kbp upstream)
$ bedtools flank -i genes.bed -g mm9.chromsizes -l 2000 -r 0 -s > genes.2kb.promoters.bed

Show promoter coordinates
$ head genes.2kb.promoters.bed
chr1 134210701 134212701 Nuak2 8 +
chr1 134210701 134212701 Nuak2 7 +
chr1 33726603 33728603 Prim2, 14 -
chr1 25886552 25888552 Bai3, 31 -

Extract the sequences
$ bedtools getfasta -fi mm9.fa -bed genes.2kb.promoters.bed -fo genes.2kb.promoters.bed.fa

Can also use the samtools faidx output

BEDTools Closest

What is the gene closest to this SNP or this enhancer?

BEDTools commands
annotate
bamtobed
bamtofastq
bed12tobed6
bedpetobam
bedtobam
closest
cluster
complement
coverage
expand
flank
fisher
genomecov

getfasta
groupby
groupby
igv
intersect
jaccard
links
makewindows
map
maskfasta
merge
multicov
multiinter
nuc

overlap
pairtobed
pairtopair
random
reldist
shift
shuffle
slop
sort
subtract
tag
unionbedg
window

http://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html

BEDTools Performance

How many reads are aligned to exonic sequences?

$ awk '{if ($3=="exon"){print}}' gencode.v21.annotation.gff3 | wc -l
1162114

How many comparison would a brute force approach take to scan a 30x dataset?

30x3Gb = 90Gbp / 100bp reads = 900M reads

900M reads x 1.1M exons = 990MM comparisons! L

if ((read.start <= exon.end) && (read.end >= exon.start)) { print “in exon!”; }

Coverage across the genome

Coverage across the genome

r[1] is start pos
r[2] is end pos

Brute Force Coverage Profile

Add 1 to coverage
vector at every
position the read
covers

* This is what you
should do for the
homework! *

Delta Encoding
aka run length encoding

Only record those
positions when the
coverage changes

Plot Coverage and Read Positions

Plot Each
Coverage Step

Plot Each Read

Plot Coverage and Read Positions

Plot Each
Coverage Step

Plot Each Read

Brute Force works, but is pretty slow.

How can we make it go faster?

Plane Sweep

The basic algorithm works like this:
• Assume layout is in sorted order by start position (or explicitly sort by start position)

• use a “list” to track how many reads currently intersect the plane keyed by end coord
• the number of elements in the list corresponds to the current depth

• walking from start position to start position
• check to see if we past any read ends
• coverage goes down by one when a read ends
• coverage goes up by one when new read is encountered

pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r1 [1,30]:
active set is empty; add to active set: 30
output (1,1)

1

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r1 [1,30]:
active set is empty; add to active set: 30
output (1,1)

arrive at r2 [5,25]:
5 < 30: add to active set: 25, 30 <- notice insert at beginning of active set
output (5, 2)

1 2

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r1 [1,30]:
active set is empty; add to active set: 30
output (1,1)

arrive at r2 [5,25]:
5 < 30: add 25 to active set: 25, 30 <- notice insert at beginning of active set
output (5, 2)

arrive at r3 [10,45]:
10 < 25; add 45 to active set: 25, 30, 45 <- add to end of active set
output (10, 3)

1 2 3

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r3 [10,45]:
10 < 25; add 45 to active set: 25, 30, 45 <- add to end of active set
output (10, 3)

arrive at r4 [20,40]:
20 < 25; add 40 to active set: 25, 30, 40, 45 <- out of order again
output (20, 4)

1 2 3 4

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r5[35,55]:
35 > 25: step down at 25; active set: 30, 40, 45
output (25, 3)

1 2 3 4 3

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r5[35,55]:
35 > 25: step down at 25; active set: 30, 40, 45
output (25, 3)

35 > 30: step down at 30; active set: 40, 45
output (30, 2)

1 2 3 4 3 2

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

arrive at r5[35,55]:
35 > 25: step down at 25; active set: 30, 40, 45
output (25, 3)

35 > 30: step down at 30; active set: 40, 45
output (30, 2)

35 < 40: add 55 to active set: 40, 45, 55
output (35, 3)

1 2 3 4 3 2 3

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

Flush: 40, 45, 55
1 2 3 4 3 2 3

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

Flush: 40, 45, 55

step down at 40; active set: 45, 55
output (40, 2)

1 2 3 4 3 2 3 2

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

Flush: 40, 45, 55

step down at 40; active set: 45, 55
output (40, 2)

step down at 45: active set: 55
output (45, 1)

1 2 3 4 3 2 3 2 1

Plane Sweep
pos: 1 5 10 15 20 25 30 35 40 45 50 55
pos: | | | | | | | | | | | |
r1: [============================]
r2: [===================]
r3: [==================================]
r4: [===================]
r5: [==================]

Flush: 40, 45, 55

step down at 40; active set: 45, 55
output (40, 2)

step down at 45: active set: 55
output (45, 1)

step down at 55: active set: {}
output (55, 0)

1 2 3 4 3 2 3 2 1 0

Plane Sweep
Keep track of end
positions of reads
that have been
seen so far

Check to see if
any reads have
ended before the
start of this one

Add the end of the
current read to the
sweep plane in
sorted order

Why sorted?

Plane Sweep
Keep track of end
positions of reads
that have been
seen so far

Check to see if
any reads have
ended before the
start of this one

Add the end of the
current read to the
sweep plane in
sorted order

See notes on how to handle
reads that have same
coordinates

(Annoying bookkeeping :-/)

Plane Sweep
Keep track of end
positions of reads
that have been
seen so far

Check to see if
any reads have
ended before the
start of this one

Add the end of the
current read to the
sweep plane in
sorted order

Do we really need
the whole list to be
sorted?

Heaps & Priority Queues
Binary Min Heap: Binary tree such that
the value of a node is less than or equal
to the value of its 2 children

Similar to a binary search tree, although
there are no guarantees about the
relationships of the left and right children

Very efficient data structure for dynamically maintaining a set of element while
allowing you to find the minimum (or maximum) very fast:

Insert: O(lg(n)) <- super fast
Remove: O(lg(n)) <- super fast
Find-min: O(1) <- instantaneous

Key to fast performance derives from heap shape property: the tree is guaranteed
to be a complete binary tree, meaning it will remain balanced and the height will
always be log(n)

Binary Heaps
Shape Property:

Complete binary tree with every level full, except potentially the bottom level,
AND bottom level filled from left to right

Valid Valid

Invalid Invalid

Min Binary Heaps
Ordering Property:

The value of each node is less than or equal to the value of its children,
BUT there is no ordering between left and right children

Valid

1

4 8

Valid

2

8 3

342
220

2018

33800

Invalid

4

1 8

Invalid

2

8 3

342
2

2018

33800

Min Binary Heaps

What does the shape property imply about the height of the tree?

Guaranteed to be lg n J

What does the ordering property imply about the root of the tree?

Guaranteed min (or max) value will be in the root node

That’s interesting, I wonder if we could use this for a priority queue…

… just need to efficiently insert() and removeTop()

1

4 8

2

8 3

342
220

2018

33800

Inserting into a binary heap
Insert the elements 2, 4, 7, 3

2 2
/

4

2
/ \

4 7

2
/ \

4 7
/

3

i(2) i(4) i(7) i(3)

2
/ \

3 7
/

4

null

The shape property tells us that we need to fill one level at a time, from left to
right. So the number of elements in a heap uniquely determines where the
next node has to be placed.

What about the ordering property? When we insert 3, the parent 4 so the
ordering property is violated. There’s an easy fix however, just swap the
values!

Note that in general, we may need to keep swapping “up the tree” as long
as the ordering property is still violated. But since there are only log n levels,
this can take at most O(log n) time in the worst case.

Remove top from a binary heap
Remove the top

2
/ \

7 4
/

10

Note that in general, we may need to keep swapping “down the tree” as
long as the ordering property is still violated. But since there are only log n
levels, this can take at most O(log n) time in the worst case.

7 4
/

10

ERROR:
2 trees

7
/ \

10 4

ERROR:
4 < 7

7
/

10
/

4 ERROR:
Shape Violation

Any ideas?

10
/ \

7 4
/

2

10
/ \

7 4

4
/ \

7 10
1.Swap

last
2. Remove

last
3. Swap down
from root with
smaller child

Heap Implementation
We could implement a heap as a tree with references, but those

references take up a lot of space and are relatively slow to resolve

Lets encode the tree inside an array!

a

b c
d e f g

h i j

1
a

2
b

3
c

4
d

5
e

6
f

7
g

8
h

9
i

10
j

Encoding a complete tree into the array in level order
puts the children and parent in predictable locations

(Math is easier if the array starts at 1 instead of 0)

Parent(i) = array[i/2]
Parent(f) = parent(6) = array[6/2] = array[3] = c

left(i) = array[i*2] & right(i) = array[i*2+1]
left(3) = array[3*2] = array[6] = f & right(3) = array[3*2+1] = array[7] = g

Heaps In Python

Heap-based Plane-Sweep

planeheap[0] is min

heapq.heappop()
removes from heap

heapq.heappush() adds
to heap

Heaps in python are built
from regular lists

BEDTools Performance

How many reads are aligned to exonic sequences?

$ awk '{if ($3=="exon"){print}}' gencode.v21.annotation.gff3 | wc -l
1162114

How many comparison would a brute force approach take to scan a 30x dataset?

30x3Gb = 90Gbp / 100bp reads = 900M reads

900M reads x 1.1M exons = 990MM comparisons! L

if ((read.start <= exon.end) && (read.end >= exon.start)) { print “in exon!”; }

Plane Sweep to the Rescue!

Sweep Line

Plane Sweep to the Rescue!

Start of E1
E1 is active

{E1}

Plane Sweep to the Rescue!

A1 overlaps E1

{E1=(A1)}

Plane Sweep to the Rescue!

A2 overlaps E1

{E1=(A1, A2)}

Plane Sweep to the Rescue!

A3 overlaps E1

{E1=(A1, A2, A3)}

Plane Sweep to the Rescue!

End of E1

Report:
{E1=(A1, A2, A3)}

Plane Sweep to the Rescue!

A4 starts,
but nothing is active

Plane Sweep to the Rescue!

A4 end,
but nothing is active

Plane Sweep to the Rescue!

E2 starts

{E2}

Plane Sweep to the Rescue!

A5 overlaps E2

{E2=(A5)}

Plane Sweep to the Rescue!

…

Plane Sweep to the Rescue!

E3 Ends

Plane Sweep to the Rescue!

All done!

Plane Sweep to the Rescue!

Final Results:

E1=(A1,A2,A3)
E2=(A5,A6,A7)

E3=(A10,A12,A11)

Plane Sweep to the Rescue!

How many comparisons does the plane sweep algorithm make?

Each read is compared to the “active set”

Relatively few exons overlap: average ~1.1 active exons/position

Total comparisons: 900M reads * 1.1 “active exons/read” = 990M comparisons J

Output is basically as fast as we can read the input data J

BEDTools Performance

Next Steps
1. See Lecture Notes for Full Details

2. Review Bedtools docs: http://bedtools.readthedocs.io/

3. Finish Assignment 3

http://bedtools.readthedocs.io/

