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Assignment 1: Chromosome Structures

Assignment Date: Wednesday, Jan 29, 2020
Due Date: Wednesday, Feb. 5, 2020 @ 11:59pm

Assignment Overview

In this assignment you will profile the overall structure of the genomes of several important species and then study the yeast genome in more detail. As a reminder, any questions about the
assignment should be posted to Piazza

Question 1: Chromosome structures

Download the chomosome size files for the following genomes (Note these have been preprocessed to only include main chromosomes):

1. Arabidopsis thaliana (TAIR10) - An important plant model species [info]

2. Tomato (Solanum lycopersicum v4.00) - One of the most important food crops [info]

3. E. coli (Escherichia coli K12) - One of the most commonly studied bacteria [info]

4. Fruit Fly (Drosophila melanogaster, dm6) - One of the most important model species for genetics [info]
5. Human (hg38) - us :) [info]

6. Wheat (Triticum aestivum, IWGSC) - The food crop which takes up the largest land area [info]

7. Worm (Caenorhabditis elegans, ce10) - One of the most important animal model species [info]
8. Yeast (Saccharomyces cerevisiae, sacCer3) - an important eukaryotic model species, also good for bread and beer [info]

Using these files, make a table with the following information per species:

e Question 1.1. Total genome size

e Question 1.2. Number of chromosomes

e Question 1.3. Largest chromosome size and name
¢ Question 1.4. Smallest chromosome size and name
¢ Question 1.5. Mean chromosome length

Question 2: Sequence content

Download the yeast genome from here: http://schatz-lab.org/appliedgenomics2020/assignments/assignment1/yeast.fa.gz

https://github.com/schatzlab/appliedgenomics2020




Outline

I. Assembly theory
— Assembly by analogy

2. Practical Issues

— Coverage, read length, errors, and repeats

3. Next-next-gen Assembly

— Canu: recommended for PacBio/ONT project

4. Whole Genome Alignment
—  MUMmer recommended
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de Bruijn Graph Construction

* G = (VE)
* V = Length-k sub-fragments
* E = Directed edges between consecutive sub-fragments
* Sub-fragments overlap by k-1 words

Fragments |f|=5 Sub-fragment k=4 Directed edges (overlap by k-1)
It was the best
It was the best of It was the best was the best of
- was the best of
was the best of times was the best of the best of times

—> the best of times

— Overlaps between fragments are implicitly computed

de Bruijn, 1946
Idury et al., 1995
Pevzner et al., 2001



de Bruijn Graph Assembly

It was the best of times, it

v

it was the worst of times, it

of times, it was the

After graph construction,
try to simplify the graph as
much as possible

the age of foolishness

it was the age of

the age of wisdom, it was the




E. coli (k=50)

Reducing assembly complexity of microbial genomes with single-molecule sequencing
Koren et al (2013) Genome Biology. 14:R101


https://doi.org/10.1186/gb-2013-14-9-r101
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Outline

4. Whole Genome Alignment
—  MUMmer recommended




Whole Genome Alignment
with MUMmer

Slides Courtesy of Adam M. Phillippy
NHGRI



Goal of WGA

* For two genomes, A and B, find a mapping from
each position in A to its corresponding
position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA



Not so fast...

* Genome A may have insertions, deletions,
translocations, inversions, duplications or SNPs
with respect toB (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAAACCCCGGAGGAG. . . .GGCTGAGCA



WGA visualization

* How can we visualize whole genome alignments!?

* With an alignment dot plot

— N x M matrix

* Leti = position in genome A

* Letj = position in genome B

* Fill cell (i,j) if A;shows similarity to B,

— A perfect alignment between A and B would completely fill
the positive diagonal
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Insertion into Reference
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Q: AB @
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Insertion into Query

R: AB
Q: AB

Collapse Query

R: ARRB
Q: ARB

Collapse Reference

R: ARB
Q: ARRB

AR RB

Collapse Query
w/ Insertion

R: ARIRB
Q: ARB

Exact tandem
alignment if I=R

Qollapse Reference

w/Insertion

R: ARB
Q: ARIRB

Exact tandem
alignment if I=R

AR I RB

Collapse Query Collapse Reference o
R: ARRRB © R: ARRB o
Q: ARRB o Q: ARRRB I
x od /T
< <
Inversion Rearrangement
w/ Disagreement
R: ABC R: ABCDE
Q: AB'C Q: AFCBE

A F CBE

 Different structural
variation types /
misassemblies will be
apparent by their
pattern of breakpoints

* Most breakpoints will
be at or near repeats

« Things quickly get
complicated in real
genomes



Alighment of 2 strains of Y. pestis
http://mummer.sourceforge.net/manual/



Halomonas sp. GFAJ-|

Library |: Fragment Library 2: Short jump
Avg Read length: 100bp Avg Read length: 50bp
Insert length: 180bp Insert length: 2000bp

A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus
Wolfe-Simon et al (2010) Science. 332(6034)1163-1166.



Digital Information Storage
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Fig. S1. Schematic of DNA information storage.

Encoding/decoding algorithm implemented in dna-encode.pl from David Dooling.

Next-generation Digital Information Storage in DNA
Church et al (2010) Science. 337(6102) 1628



Assignment 2: Genome Assembly
Due Wednesday Feb 12 @ | 1:59pm

. Setup Docker/Ubuntu
Initialize Tools

Download Reference Genome & Reads

-h}uN~

. Decode the secret message

|. Estimate coverage, check read quality
2. Check kmer distribution

3. Assemble the reads with spades

4.  Align to reference with MUMmer
5. Extract foreign sequence
6. dna-encode.pl -d

THE MISSION BEGINS 05:05:06
4

https://github.com/schatzlab/appliedgenomics2020/blob/mas
ter/assignments/assignment2/README.md

’




Find and decode

nucmer -maxmatch ref.fasta \
default/ASSEMBLIES/test/final.contigs. fasta

—-maxmatch Find maximal exact matches (MEMs) without repeat filtering
-p refctg Set the output prefix for delta file

mummerplot —--layout --png out.delta
--layout Sort the alignments along the diagonal
—-—png Create a png of the results

show-coords —-rclo out.delta

-r Sort alignments by reference position

-C Show percent coverage

-1 Show sequence lengths

-0 Annotate each alignment with BEGIN/END/CONTAINS

samtools faidx default/ASSEMBLIES/test/final.contigs.fasta
Index the fasta file

samtools faidx default/ASSEMBLIES/test/final.contigs.fasta \
contig XXX:YYY-ZZZ | ./dna-encode -d

See manual at http://mummer.sourceforge.net/manual



Outline

2. Practical Issues
— Coverage, read length, errors, and repeats

3. Next-next-gen Assembly
— Canu: recommended for PacBio/ONT project




Assembly Applications
* Novel genomes ﬂ‘g e Ve
g?l-\l'lOlei%K §5k

* Metagenomes

* Sequencing assays
— Structural variations

— Transcript assembly




Why are genomes hard to assemble!?

Biological:
— (Very) High ploidy, heterozygosity, repeat content \
Sequencing: \

— (Very) large genomes, imperfect sequencing

Computational:

— (Very) Large genomes, complex structure

Accuracy:

— (Very) Hard to assess correctness




Assembling a Genome

|. Shear & Sequence DNA - = —
- o

2. Construct assembly graph from reads (de Bruijn / overlap graph)

.AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA..

3. Simplify assembly graph

E—> 00— 0 —>0—>0—>0—>0 — 0 5 0 —» == = "—> 0o

el N el N

o @] (@] (&)

4. Detangle graph with long reads, mates, and other links

G



Bloom filter

Table 2 de novo human genome (NA18507) assemblies

Method Minia C.&B. ABySS SOAPdenovo
Value of k chosen 27 27 27 25

Number of contigs (M) ~ 3.49 7.69 435 -

Longest contig (kbp) 18.6 220 159 -

Contig N50 (bp) 1156 250 870 886

Sum (Gbp) 2.09 1.72 2.10 2.08

Nb of nodes/cores 11 1/8 217168 1/16

Time (wall-clock, h) 23 50 15 33

Memory (sum 5.7 32 336 140

of nodes, GB)

de novo human genome (NA18507) assemblies reported by our assembler
(Minia), Conway and Bromage assembler [9], ABySS [8], and SOAPdenovo [7].
Contigs shorter than 100 bp were discarded. Assemblies were made without any

pairing information.

Nodes self-information:

J.“
[logs ( _ )] = 30 bits
.

Structure size:

10 + 3-6
~— ~
Bloom  False positives

= 28 bits

1
A.

ay...0p Zu' mod 10 0

o 0

ATC 0— 0

CCG 0 0

TCC 5 —1

CGC 6 1

0

0

(b) U

(©

(d

Space-efficient and exact de Bruijn graph representation based on a Bloom filter
Chikhi and Rizk (2013) Algorithms for Molecular Biology. 8:22



Genomics Arsenal in the year 2020

Sample Preparation Sequencing

Chromosome Mapping
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Assembly Complexity




Assembly Complexity
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Assembly Complexity
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The advantages of SMRT sequencing
Roberts, R, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405



Two Paradigms for Assembly

@

de Bruijn Graph

\@%@D
A S

Short read assemblers

Repeats depends on word length
Read coherency, placements lost

Robust to high coverage

Overlap Graph

Long read assemblers

Repeats depends on read length
Read coherency, placements kept

Tangled by high coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.




Overlap between two sequences

overlap/(i 9 bases) gyerhang (6 bases)

- ~ A
.AGCCTAGACCTACA G CAGGAC
CAGTACTT T TTATCCGGT...
- ~ S~ —— _
overhang % identity = 18/19 % = 94.7%

overlap - region of similarity between regions
overhang - un-aligned ends of the sequences

The assembler screens merges based on:
* length of overlap

* % identity in overlap region

* maximum overhang size.

[How do we compute the overlap?]

[Do we really want to do all-vs-all?]



Very fast approximate overlapping

Maybe we don’t need to compute the exact
identity of the overlap region, just approximate it

d S,: CATGGACCGACCAG
CAT GAC GAC
ATG ACC ACC

TGG CCG CCA

GGA CGA CAG

GTA

If two reads overlap, they should share many of
the same kmers: Their Jaccard coefficient should
be high: |intersection| / [union|

CGA CGT

AGT CCG TCG
CAG ACC ATC
GCA TAC GAT

GCAGTACCGATCGT : S,

b . ry r, \ / Iy I, Iy I,
| | HEEA S -
° ATG CAG
But tracking all of the kmers for a read is a lot of 1 57 36 19 arc Chc 18 13 %6 39
overhead 3 58 11 o4 cac\ Lo 49 a4 o %
5 48 47 26 AcCC ACC 5 48 47 26
2 7 50 45 con | con 24 7 50 45
. “ ” : 33 28 11 35 30
Instead, cgmpare the “sketch” of the reads: a 8 28 11 51 Gac gar 35 0 6 82
small fraction of kmers carefully chosen 20 3 & 44 Icc 54 33 28 11
C 1, 2, 1 min-mers 1, 6, 6
. . 5, , , 5 5, ) )
« LSH: Find the sketch by applying N hash P shotch (5 " Shaten (5,
functions to the kmers, and keeping the minimum d J(S,8,)=24=05
hash values reported from each (N=4 in
S1: CATGGACCGACCAG
example) | T
S,: GCAGTACCGATCGT

This forms a nice “random” sample of the reads,
and the Jaccard coefficient is a good
approximation of the sequence similarity

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing
Berlin et al (2015) Nature Biotechnology



gkpStore

i

Build read and
overlap
databases

Correct

Build read and|
overlap
databases

Trim

Build read and
overlap
databases

Assemble

ovliStore

Canu Workflow

choose overlaps global
) —
for correction scores
estimate corrected read IDs
>
read lengths to correct
generate corrected [ -/ corrected
read consensus reads
pe=————

split reads

output reads

detect errors in read: 1

recompute overlap [ adjusted
alignments I I error rates
construct contigs

generate contig
consensus

generate outputs

Three rounds of analysis:

1.

Error Correction: Use MHAP to overlap
the reads, then compute a mini
assembly centered around each read of
good overlaps to error correct

Trim: Use MHAP to recompute overlaps
to find regions that are not well
supported and discard

Unitigging: Use Dynamic Programming
to carefully overlap the error corrected
reads, construct overlap graph, and then
“unitig” those overlaps to build the
contigs

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
Koren et al (2017) Genome Research



Unitigging: Pruning the

The overlap graph has many redundant edges:

« If the average coverage is D, we should expect D
overlaps at the beginning of the read, and D at the
end

Transform the graph to simplify the assembly
problem (without changing the valid solutions):

1. Contained reads removal: Short reads that are
substrings of longer reads don’t advance the
assembly, remove those nodes and all of the edges

2. Transitive edge removal: If A-> B, and B->C,
remove the transitive edge A->C

3. “Chunkification”: Linear subgraphs define
uniquely assemblible segments: “unitigs”

After Step 3: K
f 1 /Chunk
) 4D

Overlap Graph

,f\--:-t? Siep® ,/ .\.
1 o .>—<I

Chunk Graph

Towards Simplifying and Accurately Formulating Fragment Assembly

Myers (1995) | Comput Biol. Summer;2(2):275-90.



Ingredients for a good assembly

Coverage

dog N50 /

dog me:

M
1

100k

panda N50 +

panda mean +

10k
L

1k

= 1000 bp
=@ 710bp
@ 250 bp
= 100 bp
W 52bp
B 30 bp

Expected Contig Length

100
|

Read Coverage

High coverage is required

—  Oversample the genome to ensure
every base is sequenced with long
overlaps between reads

—  Biased coverage will also fragment
assembly

Read Length

\OF/_/
2%

@ //f%\f@\

@

Reads & mates must be longer
than the repeats

—  Short reads will have false overlaps
forming hairball assembly graphs

—  With long enough reads, assemble
entire chromosomes into contigs

Quality

lg" "gl
H—
N

Errors obscure overlaps

—  Reads are assembled by finding
kmers shared in pair of reads

—  High error rate requires very short

seeds, increasing complexity and
forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly
Schatz MC,Witkowski, McCombie,WR (2012) Genome Biology. 12:243




Coverage Statistics

total bases sequenced

sequencing coverage = :
9 9_ 9 genome_size

total bases sequenced
sequencing_coverage

genome_size

100Gb

genome_size = 2Gb

50x




K-mer counting

Kmer-ize

Read 1: GATTACA => GAT,ATT,TTA,TAC,ACA
Read 2: TACAGAG => TAC,ACA,CAG,AGA,GAG
Read 3: TTACAGA => TTA,TAC,ACA,CAG,AGA

list

From read k-mers alone, can
learn something about how
frequently different sequences
occur (aka coverage)

Fast to compute even over huge
datasets

GAT
ATT
TTA
TAC
ACA
TAC
ACA
CAG
AGA
GAG
TTA
TAC
ACA
CAG
AGA

ACA
ACA
ACA
AGA
AGA
ATT
CAG
CAG
GAG
GAT
TAC
TAC
TAC
TTA
TTA

ACA:

AGA:

ATT:
CAG:

GAG:1

GAT:
TAC:

TTA:

S\

sort count

3 kmers occur 1lx
3 kmers occur 2x
2 kmers occur 3x

tally



Density

0.015

0.010

0.005

0.000

K-mer counting in real genomes

il

Error k-mers

%! True k-mers

40 60

Coverage

80

100

The tally of k-mer counts in real
genomes reveals the coverage
distribution.

Here we sequenced 120Gb of
reads from a female human
(haploid human genome size is
3GDb), and indeed we see a clear
peak centered at 40x coverage

There are also many kmers that
only occur <5 times. These are
from errors in the reads

There are also kmers that occur
many times (>>70 times). These
are repeats in the genome



Density

Error Correction with Quake

|. Count all “Q-mers” in reads 2. Correction Algorithm
* Fit coverage distribution to mixture model * Considers editing erroneous kmers into

of errors and regular coverage trusted kmers in decreasing likelihood
* Automatically determines threshold for * Includes quality values, nucleotide/nucleotide

trusted k-mers substitution rate
o
5‘ _ I
o

observed reac: (ACGTCCTAGITA) A
Error k- . aualy Likelihood
o H
S0 ™™= il
\) True k- ACGCCCTAGTTA
A ACGTCCTACTTA
ACGGCCTAGTTA
§ — corrected reads: P
o actual read:
ACGCCCTAATTA

2 ) st L iz | (ACSCCTATTT)  ielinoog threshold, __ __ _ |

[ I I I I ]

0 20 40 60 80 100

Coverage

Quake: quality-aware detection and correction of sequencing reads.
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. | |:R1 16



K-mer counting in heterozygous genomes

Sequencing read
from homologous
chromosome 1A

e -

Sequencing read
from homologous
chromosome 1B

e -




K-mer counting in heterozygous genomes

Sequencing read
from homologous
chromosome 1A

7N |55 7 N 1 I —

Sequencing read
from homologous
chromosome 1B

e -




K-mer counting in heterozygous genomes

Sequencing read
from homologous
chromosome 1A

7N |55 7 N 1 I —

Sequencing read
from homologous
chromosome 1B

7N |55 1 Y 1 - I —




K-mer counting in heterozygous genomes
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K-mer counting in heterozygous genomes

Sequencing read
from homologous
chromosome 1A

*

from homologous
chromosome 1B

*

"
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I Sequencing read
——
—
—
I




K-mer counting in heterozygous genomes
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Heterozygous Kmer Profiles
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0.1% heterozygosny 1% heterozygosﬂy 5% heterozygosﬂy

* Heterozygosity creates a characteristic “double-peak” in the Kmer profile
« Second peak at twice k-mer coverage as the first: heterozygous kmers average
50x coverage, homozygous kmers average 100x coverage

* Relative heights of the peaks is directly proportional to the heterozygosity rate
« The peaks are balanced at around 1.25% because each heterozygous SNP
creates 2*k heterozygous kmers (typically k = 21)



GenomeScope: Fast genome analysis from short reads
http://genomescope.org

GenomeScope Profile
len:152,727,721bp uniq:68.7% het:1.07% kcov:22.1 err:0.337% dup:0.463

3e+06 4e+06
| |

Frequency
2e+06
|

1e+06
|

T
|
|
I
|
|
|
I
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
I
|
|
|
I
|
|
|
|
I
|
|
|
I
|
|
|
|

0e+00
|

observed
—— full model
unique sequence
errors
= kmer-peaks

T T —
0 20 40

« Theoretical model agrees well with published results:
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GenomeScope Profile
len:152,727,721bp uniq:68.7% het:1.07% kcov:22.1 err:0.337% dup:0.463

observed
—— full model
unique sequence
— errors
=— = kmer-peaks

| 1 1 1 II | |
1e+00 1e+02 1e+04 1e+06

Coverage

» Rate of heterozygosity is higher than reported by other approaches but likely correct.
» Genome size of plants inflated by organelle sequences (exclude very high freq. kmers)

Vurture, GW*, Sedlazeck FJ*, et al. (2017) Bioinformatics
Ranallo-Benavidez, TR. et al. (2019) bioRxiv



Unitigging / Unipathing

* After simplification and correction, compress graph
down to its non-branching initial contigs

’ ¢¢

— Aka “unitigs”, “unipaths”
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Why do contigs end?

(1) End of chromosome! ©, (2) lack of coverage, (3) errors,
(4) heterozygosity and (5) repeats



Repetitive regions

Repeat Type Definition / Example

Low-complexity DNA / Microsatellites (b,b,...b )N where | <k <6 2%
CACACACACACACACACACA

SINEs (Short Interspersed Nuclear Alu sequence (~280 bp) 13%

Elements) Mariner elements (~80 bp)

LINEs (Long Interspersed Nuclear ~500 — 5,000 bp 21%

Elements)

LTR (long terminal repeat) Tyl -copia, Ty3-gypsy, Pao-BEL 8%

retrotransposons (~100 — 5,000 bp)

Other DNA transposons 3%

Gene families & segmental duplications 4%

* Over 50% of mammalian genomes are repetitive

— Large plant genomes tend to be even worse
— Wheat: |6 Gbp; Pine: 24 Gbp



Repeats and Coverage Statistics

A R, B R, Ri+R,

* If n reads are a uniform random sample of the genome of length G,
we expect k=n A /G reads to start in a region of length A.

— |If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

) y (An/G)" =5
Pr(X - copy) = " (XA) (G_XA) A(Ak)=In Pr(l - copy) =In k! 5 | = nA —kln2
kN G G Pr(2 - copy) (2An/G) .G G
k!

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 2| (suppl 2):ii79-85.



Paired-end and Mate-pairs

Paired-end sequencing
* Read one end of the molecule, flip, and read the other end

* Generate pair of reads separated by up to 500bp with inward orientation

300bp > -

Mate-pair sequencing
* Circularize long molecules (1-10kbp), shear into fragments, & sequence

* Mate failures create short paired-end reads

2x100 @ ~10kbp (outies)

> <€

10kbp
circle

2x100 @ 300bp (innies)
> <

X



Scaffolding

* Initial contigs (aka unipaths, unitigs)
terminate at
— Coverage gaps: especially extreme GC
— Conflicts: errors, repeat boundaries

* Use mate-pairs to resolve correct order
through assembly graph
— Place sequence to satisfy the mate constraints

— Mates through repeat nodes are tangled

* Final scaffold may have internal gaps called
sequencing gaps
— We know the order, orientation, and spacing,

but just not the bases. Fill with Ns instead
Why do scaffolds end?

‘Q
*
’Q
*

*
*
*
*
*
*
*
“
*



Assembly Summary

Assembly quality depends on

I. Coverage: low coverage is mathematically hopeless

2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4

Error rate: errors reduce coverage, obscure true overlaps

* Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds

— Extensive error correction is the key to getting the best assembly possible
from a given data set

* Watch out for collapsed repeats & other misassemblies

— Globally/Locally reassemble data from scratch with better parameters &
stitch the 2 assemblies together



Next Steps

|. Reflect on the magic and power of DNA ©
2. Check out the course webpage
3. Register on Piazza

4. Work on Assignment |

|. Set up Linux, set up Virtual Machine
2. Set up Dropbox for yourself!
3. Get comfortable on the command line




