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Presentations!

Recommended outline for your talk (1 minute per slide):

1. Title Side: Who are you, ttle, date

2. Intro 1: Whats the big idea???

3. Imtro 2: More specficaly, what are you trying to leam?
4. Methods 1; What did you try?

5. Methods 2: What is the key idea?

6. Data 1: What data are you looking at?

7. Data 2: Anything notabie about the data?

£ Results 1: What did you see!

8. Results 2: Does it work?

0. Resuits 3. How does It compare 10 other methods/data deas?
11, Discussion 1: What did you learn from this study?

12. Discussion 2: What does this mean for the future?
13. Acknowledgements: Who helped you along the way?

| strongly discourage you from trying 10 give 8 live demo as they ane 100 unpredictable for a short 1alk, If you have running software you want 10 st
the important steps.
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Adventures in Overfitting
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Cancer Genetics &
Genomics




Benign vs. Malignant

Benign vs. Malignant Tumors

Benign (not cancer) tumor celis grow Malignant (cancer) cells invade
only locally and cannot spread by neighboring tissues, enter blood vessels,

invasion or metastasis and metastasize to different sites

CF W S AL Wt ML B R D T el



Somatic Mutations In Cancer
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Somatic mutation prevalence
inumber mutabions per megabase)

Signatures of mutational processes in human cancer
Alexandrov et al (2013) Nature. doi:10.1038/nature 12477
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Novel patterns of genome rearrangement and their association with survival in breast cancer
Hicks et al (2006) Genome Research. Doi: 10.1101/gr.5460106



Most commonly used Her2-amplified breast cancer cell line
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80+ chromosomes,
Many are a patchwork of fragments of other chromosomes



Aberrations in cancer genomes
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Chromothripsis, which literally means ‘chromosome shattering', is a phenomenon that has

recently been reported to occur in cells harbouring complex genomic rearrangements

(CGRs). Has 3 defining characteristics:

(1) Occurrence of remarkable numbers of rearrangements in localized chromosomal regions;

(2) Low number of copy number states (generally between one or two) across the rearranged
region;

(3) Alternation in the chromothriptic areas of regions where heterozygosity is preserved with
regions presenting loss of heterozygosity (LOH).

Chromothripsis and cancer: causes and consequences of chromosome shattering
Forment et al (2012) Nature Reviews Cancer. doi:10.1038/nrc3352
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Hypomethylation distinguishes genes
of some human cancers
from their normal counterparts

Andrew P, Feinberg & Bert Vogelstein

Cell Structure and Function Laboratory, The Oncology Center,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, USA

It has been suggested that cancer represents an alterstion in
DNA, beritable by progeay cells, that leads to abnormally
regulsted expression of normal cellular genes; DNA alterations
such as mutations’”, rearrangements’ * and changes in methyla-
tion** have been proposed to have such a role. Because of

evidence that DNA methylation Is important in gene

(for review see refs 7, 9-11), several investigators
have studied DNA methylation in animal tumours, transformed
cells and lenksemin cells in culture™' "™, The results of these
studies have varied; depending on the technigues and systems
wsed, an increase'’ ™", decrense™ ™, or no change™ ™ in the
degree of methylation has been reported. To our knowledge,
however, primary human tumour tissues have not been used
in such studies. We have now examined DNA methylation in
human cancer with three considerations im mind: (1) the methy-

and (3) Hpall and Hhal cleavage sites should be present in the
regions of the genes.

The first cancer studied was a grade D (ref. 43), moderately
well differentiated adenocarcinoma of the colon from a 67-yr-
old male. Tissue was obtained from the cancer itself and also
from colonic mucosa stripped from the colon at a site just
outside the histologically proven tumour margin. Figure 1 shows
the pattern of methylation of the studied genes. Before digestion
with restriction enzymes, all DNA samples used in the study
had a size >25,000 base pairs (bp). After Hpall cleavage,
hybridization with a probe made from a cDNA dlone of human
growth hormone (HGH) showed that significantly more of the
DNA was digested to low-molecular weight fragments in DNA
from the cancer (labelled C in Fig. 1) than in DNA from the
normal colonic mucosa (labelled N). In the hybridization conds-
tions used, the HGH probe detected the human growth hor-
mone genes & well as the related chorionic somatotropin

Toble 1 Quantitation of metylaton of specific peses 1 human cancers and
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Nature 301,89 - 92 (06 January 1983); doi:10.1038/301089a0
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Methylation changes in cancer
detected by Nanopore Sequencing
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Comparison of bisulfite sequencing and nanopore-based R7.3 data in reduced representation data sets from cancer and normal cells. (a) Raw
data (points) and smoothed data (lines) for methylation, as determined by bisulfite sequencing (top) and nanopore-based sequencing using an

R7.3 pore (bottom), in a genomic region from the human mammary epithelial cell line MCFIOA (green) and metastatic mammary epithelial

cell line MDA-MB-231 (orange). (b) Same region as in a but with individual nanopore reads plotted separately. Each CpG that can be called is
a point. Blue indicates methylated; red indicates unmethylated.

Detecting DNA cytosine methylation using nanopore sequencing
Simpson,Workman, Zuzarte, David, Dursi, Timp (2017) Nature Methods. doi:10.1038/nmeth.4184



Causes of Cancer

A

Cancer is a Preventable Disease that Requires Major Lifestyle Changes
Anand et al (2008) Pharmaceutical Research. doi: 10.1007/s11095-008-9661-9
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Fig. 1. The relationship between the number of stem cell divisions in the lifetime of a given tissue and the Nfetime risk of cancer in that tissue,
Values are from table S1. the derwvation of which s dscussed in the supplementary matenals.

Variation in cancer risk among tissues can be explained by the number of stem cell divisions
Tomasetti and Vogelstein (2015) Science. DOI: 10.1126/science.1260825



Hereditary Replicative Environmental

0%

1 Percentage of driver mutations attributable to each factor

Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention
Tomasetti, Li, and Vogelstein (2017) Science. DOI: 10.1126/science.aaf901 |




The Six Hallmarks of Cancer

Sustaining proliferative
signaling

Resisting Evading growth
cell death SUPPressors

Inducing
angiogenesis

Enabling replicative
immeortality

Hallmarks of Cancer
Hanahan and Weinberg (2000) Cell. http://doi.org/10.1016/50092-8674(00)81683-9



Oncogenes
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Proto-oncogene to oncogene

HER-2/neuHER-2/neu: encodes for a cell surface receptor that can stimulate cell
division. The HER-2/neu gene is amplified in up to 30% of human breast cancers.
RAS: The Ras gene products are involved in kinase signaling pathways that
ultimately control transcription of genes, regulating cell growth and differentiation.
MYC: The Myc protein is a transcription factor and controls expression of several
genes.

SRC: First oncogene ever discovered. The Src protein is a tyrosine kinase, which
regulates cell activity.

hTER: Codes for an enzyme (telomerase) that maintains chromosome ends.



Tumor Suppressors

Tumor suppressor genes ©
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TP53: a transcription factor that regulates cell division and cell death.

Rb: alters the activity of transcription factors and therefore controls cell division.
APC: controls the availability of a transcription factor.

PTEN: acts by opposing the action of PI3K, which is essential for anti-apoptotic,
pro-tumorogenic Akt activation.



TP53: The first and most important
tumor suppressor

Mechanism of inactivating p53 Typical tumours Effect of inactivation
Amino-acid-changing Colon, breast, lung, bladder, | Prevents p53 from binding
mutation in the DNA- brain, pancreas, stomach, to specific DNA sequences and
binding domain oesophagus and many others | activating the adjacent genes

Extra MOW? stimulates
the degradation of p53

Breast, brain, lung and Failure to inhibit MDM2

Deletion of the others, expecially when and
P144% gene p53 itself is not mutated dqmw

Figure 1 The many ways in which p53 may malfunction in human cancers.

>10,000 known mutations

>17,000 publications
Surfing the p53 network

Volgelstein et al (2000) Nature. DOI: 10.1038/35042675



DNA Repair Genes
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« BRCA1 and BRCAZ2 (breast cancer type 1/2 susceptibility genes): Normally
expressed in the cells of breast and other tissue, where they help repair
damaged DNA, or destroy cells if DNA cannot be repaired. They are involved in
the repair of chromosomal damage with an important role in the error-free
repair of DNA double-strand breaks



Tumor Evolution
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The Clonal Evolution of Tumor Cell Populations
Peter C. Nowell (1976) Science. 194(4260):23-28 DOI: 10.1126/science.959840



Tumor Evolution

Normal MRCA
cell

['®

Distant
metastasis
Time point X: Time point Y:
+ Driver mutations diagnosis and distant and
] treatment initiation  local relapse

Time
Evolution of the cancer genome
Yates & Campbell (2012) Nature Review Genetics. doi:10.1038/nrg3317



Heterogeneity

b Regional bulk

a Cross-sectional (oncogenetic)
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The evolution of tumour phylogenetics: principles and practice
Schwarz and Schaffer (2017) Nature Reviews Genetics. doi:10.1038/nrg.2016.170
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http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002824

First Cancer Genome

nature Vel 456 6 November 2008 dol10.1038/ nature07485

ARTICLES

DNA sequencing of a cytogenetically
normal acute myeloid leukaemia genome

Timothy J. Ley'*"**, Elaine R. Mardis™'*, Li Ding""’, Bob Fulton’, Michael D. McLellan’, Ken Chen’, David Dooling’,
Brian H. Dunford-Shore’, Sean McGrath’, Matthew Hickenbotham’, Lisa Cook’, Rachel Abbott’, David E. Larson’,
Dan C. Koboldt’, Craig Pohl’, Scott Smith’, Amy Hawkins®, Scott Abbott’, Devin Locke’, LaDeana W. Hillier'”,
Tracie Miner’, Lucinda Fulton’, Vincent Magrini™’, Todd Wylie’, Jarret Glasscock’, Joshua Conyers’,

Nathan Sander’, Xiaogi Shi’, John R. Osborne’, Patrick Minx’, David Gordon®, Asif Chinwalla’, Yu Zhao',
Rhonda E. Ries', Jacqueline E. Payton®, Peter Westervelt'*, Michael H. Tomasson'*, Mark Watson™*~, Jack Baty”®,
Jennifer vanovich®’, Sharon Heath'*, William D. Shannon'*, Rakesh Nagarajan®~, Matthew ). Walter'",

Daniel C. Link'*, Timothy A. Graubert'*, John F. DiPersio’* & Richard K. Wilson™"*

Acute myeloid leukaemia is 2 highly malignant haematopoietic tumour that affects about 13,000 adults in the United States
each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that
initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to
use this approach for the unblased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here
we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal
counterpart obtained from the same patient’s skin. We discovered ten genes with acquired mutations; two were previously
described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually
all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome
sequencing as an unblased method for discovering cancer-initiating mutations in previously unidentified genes that may

respond to targeted therapies.



First Melanoma Genome

* Insertions (light-green
rectangles);

» Deletions (dark-green
rectangles);

« Heterozygous (light-orange
bars) and Homozygous (dark-
orange bars) Substitutions

« Coding substitutions (coloured
squares: silent in grey, missense
in purple, nonsense in red and
splice site in black);

« Copy number (blue lines);
regions of LOH (red lines);

* Intrachromosomal
rearrangements (green lines);

* Interchromosomal
rearrangements (purple lines).

A comprehensive catalogue of somatic mutations from a human cancer genome
Pleasance et al (2010) Nature. doi:10.1038/nature08658



Mutations in Breast Cancer
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Comprehensive molecular portraits of human breast tumours
Cancer Genome Atlas Network (2012) Nature. doi:10.1038/naturel 1412



Finding Driving Mutations

Cancer genome ® | o & 9 ® & » o LR s ® SNV W Indel

Cancer sample . e L5y
Occurrence in multiple umpm
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Candidate driver L

Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics
Khurana et al (2013) Science. DOI: 10.1126/science.1235587



Regulatory mutations in PDAC

1) Malched tumor-normal SNV calls
2) RNA-seq expression calls

[lnput whole genome sequencing data }

FunSeq2
Prioritize non-coding regulatory variants

!

For each CRR variant

!

For each CRR class

7
Associate recurrently
mutated CRRs
with flanking genes

|

Use permutation testing
to identify CRRs
affecting expression

Determine mutation \
rates for each
regulatory class

|

Normalize mutation
rates for GC content,
size, and abundance

Generate false discovery Compute expression
L rates ) L modulation scores

1
Pathway analysis
Patient survival analysnsJ

Coding alterations of PDAC are now fairly well
established but non-coding mutations (NCM:s)
largely unexplored

*Developed GECCO to analyze the thousands of
somatic mutations observed from hundreds of tumors
to find potential drivers of gene expression and
pathogenesis

*NCMs are enriched in known and novel pathways
*NCMs correlate with changes in gene expression
*NCMs can demonstrably modulate gene expression

*NCMs correlate with novel clinical outcomes

NCMs are an important mechanism for tumor
genome evolution

Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma
Feigin, M, Garvin, T et al. (2017) Nature Genetics. doi:10.1038/ng.3861



Driving Non-Coding Mutations

d NCMs correlate with gene expression changes

CRR (MUT#) Nearest gene  MUT allele WT allele Fold change  p-value q-value
MAX (5) PTPRN2 0.82 10.92 0.075 000583  0.09689
FOSL2 (7) KCNQ1 0.85 6.39 0.133 002456  0.18212
TAF7 (9) SNRPN 0.46 3.4 0.135 000818  0.11818
NFKB1 (7) GYPC 1.08 7.29 0.148 001845  0.15157
TAF1 (6) PDPN 2.09 13.08 0.160 003544 022016
BCLAF1 (5) PRSS12 1.07 6.46 0.166 001107  0.14144
MAFK (3) SOX5 0.29 163 0.178 002851 020379
POU2F2 (6) MIR4420 8.16 40.24 0.203 001773  0.15157
WRNIP1 (3) IKZF1 0.64 3.15 0.203 001811  0.15157
GATA3 (3) PCLO 0.35 167 0.210 001113  0.14144
JUND (3) TUSC? 0.98 453 0.216 002009  0.20560
REST (3) MTERF4 1.46 578 0.253 002208  0.16542
GATA1 (3) ENIP2 7.59 18.32 0.414 002588  0.18929
CEBPB (3) PNPLAS 5.69 13.62 0.418 001726  0.15157
EGR1 (5) SLC1248 434 7.99 0.542 004185 023823
SIN3A (3) FAM192A 2031 30.48 0.666 001788  0.15157

b  rrean2 expression ©5) C  SLC12A8 EXPRESSION (DFS)
P=0.0019 P =0.0490
1 Median Survival 209 Vs 1 Median Survival 13.9Vs
15.0 months 11.2 momths
n =265 n= 246

S
»

CUMULATIVE SURVIVAL
:
CUMLLATIVE SURVIVAL
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0 10 20 30 40 50 60 0 10 20 0 40 50
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Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma
Feigin, M, Garvin,T et al. (2017) Nature Genetics. doi:10.1038/ng.3861



Heterogeneity

b Regional bulk

a Cross-sectional (oncogenetic)
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The evolution of tumour phylogenetics: principles and practice
Schwarz and Schaffer (2017) Nature Reviews Genetics. doi:10.1038/nrg.2016.170



Tumor Heterogeneity
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Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
Cibulskis et al (2013) Nature Biotech. doi:10.1038/nbt.2514



PD4120a ~« Normal 28%, Tumor1.61.9%, Tumor2:10.1%
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THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
Oesperet al (2013) Genome Biology. DOI: 10.1186/gb-2013-14-7-r80



Tumor Heterogeneity

Focus: phasing adjacent variants
Divergent evolution inferred Linear, subclonal evolution
by mutually exclusive mutations inferred by mutations arising
arising on different branches in a single branch of the
of the phylogenetic tree phylogenetic tree

Subclone 1

@ Subclone 2

Sequence from Sequence from
#—& | contaminating 44— | contaminating
#—& ! normal cells or ®—® _ pnormal cells or

other subclones other subclones
& +—5 ]
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The evolution of tumour phylogenetics: principles and practice
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Gingko

http://gb.cshl.edu/ginkgo

Interactive Single Cell CNV analysis & clustering

— FEasy-to-use, web interface, parameterized for binning,

segmentation, clustering, etc I

— Per cell through project-wide analysis in any species H ===

Compare MDA, DOP-PCR, and MALBAC

— DOP-PCR shows superior resolution and consistency

Available for collaboration

— Analyzing CNVs with respect to different clinical outcomes

— Extending clustering methods, prototyping scRNA - o (1 BT |

Interactive analysis and assessment of single-cell copy-number variations.
Garvin et al. (2015) Nature Methods doi:10.1038/nmeth.3578
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Single Cell RNA-seq of Cancer
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Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
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Tumor Heterogeneity
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Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing
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Liquid Biopsies
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Serial liquid biopsies
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Liquid biopsies come of age: towards implementation of circulating tumour DNA
Wan et al (2017) Nature Review Cancer. doi:10.1038/nrc.2017.7
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Liquid biopsies come of age: towards implementation of circulating tumour DNA
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