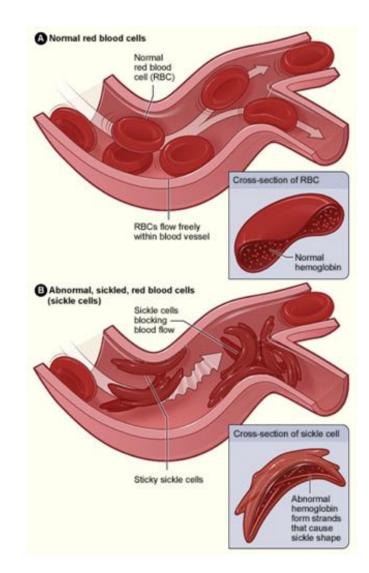
Lecture 20. Disease Genetics

Michael Schatz

April 12 2018 JHU 600.749: Applied Comparative Genomics

Part I:


Pre-genome Era

Sickle Cell Anaemia

- Sickle-cell anaemia (SCA) is an abnormality in the oxygen-carrying protein haemoglobin (hemoglobin S) found in red blood cells. First modern clinical description in 1910s
- The genetic basis of sickle cell disease is an A-to-T transversion in the sixth codon of the HBB gene.
- The mutation was actually found in the protein sequence first in the 1950s! Occurs when a person inherits two abnormal copies of the haemoglobin gene, one from each parent. Interestingly, heterozygous patients also incur a resistance to malaria infection, contributing to its prevalence in Africa where malaria infections remain a major disease

OMIM: SICKLE CELL ANEMIA

https://www.omim.org/entry/603903

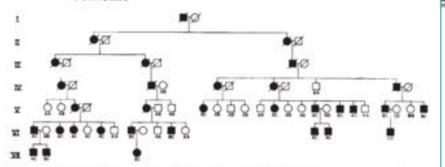
A polymorphic DNA marker genetically linked to Huntington's disease

James F. Gusella', Nancy S. Wexler^{†|}, P. Michael Conneally[†], Susan L. Naylor[‡], Mary Anne Anderson', Rudolph E. Tanzi', Paul C. Watkins^{*+}, Kathleen Ottina', Margaret R. Wallace[‡], Alan Y. Sakaguchi[‡], Anne B. Young[‡], Ira Shoulson[‡], Ernesto Bonilla[‡] & Joseph B. Martin^{*}

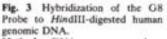
Neurology Department and Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA

 † Hereditary Disease Foundation, 9701 Wilshire Blvd, Beverley Hills, California 90212, USA
 ‡ Department of Medical Genetics, Indiana University Medical Center, Indianapolis, Indiana 46223, USA
 § Department of Human Genetics, Roswell Park Memorial Institute, Buffalo, New York 14263, USA
 § Venezuela Collaborative Huntington's Disease Project⁴

Family studies show that the Huntington's disease gene is linked to a polymorphic DNA marker that maps to human chromosome 4. The chromosomal localization of the Huntington's disease gene is the first step in using recombinant DNA technology to identify the primary genetic defect in this disorder.

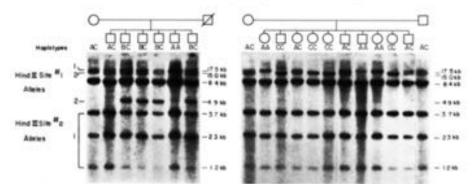

Gusella et al (1983) Nature. doi:10.1038/306234a0

A polymorphic I to H James F. Gusella', Nan Mary Anne Anderson', Margaret R. Wallace


* Neurology Department and Genetics Unit, M † Hereditary Disease I ‡ Department of Medical Ge § Department of Human O

Family studies show that the Huntingte chromosome 4. The chromosomal loca DNA technology to identify the primar

Fig. 2 Pedigree of the Venezuelan Huntington's disease family. This pedigree represents a small part of a much larger pedigree that will be described in detail elsewhere. Permanent EBV-transformed lymphoblastoid cell lines were established from blood samples of these individuals (unpublished data). DNA prepared from the lymphoblastoid lines will used to determine the phenotype of each individual at the G8 locus as described in Fig. 3. The data were analysed for linkage to the Huntington's disease gene using the program LIPED¹⁷ with a correction for the late age of onset³. Because of the high frequency of the Huntington's dis-



ease gene in this population some of the spouses of affected individuals have also descended from identified Huntington's disease gene carriers. In none of these cases, however, was the unaffected individual at significantly greater risk for Huntington's disease than a member of the general population. Although a number of younger at-risk individuals were also analysed as part of this study, for the sake of these family members the data are not shown due to their predictive nature. The data are available upon request if confidentiality can be assured.

Er

Methods: DNA was prepared as described²³ from lymphoblastoid cell lines derived from members of two nuclear families. 5 µg of each DNA was digested to completion with 20 units of *HindIII* in a volume of 30 µl using the buffer recommended by the supplier. The DNAs were fractionated on a 1% horizontal agarose gel in TBE buffer (89 mM Tris, pH 8, 89 mM Na borate, 2 mM Na EDTA) for 18 h. *HindIII*-digested AC1857 DNA was loaded in a separate lane

as a size marker. The gels were stained with ethidium bromide $(0.5 \ \mu g \ ml^{-1})$ for 30 min and the DNA was visualized with UV light. The gels were incubated for 45 min in 1 M NaOH with gentle shaking and for two successive 20 min periods in 1 M Tris, pH 7.6, 1.5 M NaCl. DNA from the gel was transferred in 20×SSC (3 M NaCl, 0.3 M Na citrate) by capillary action to a positively charged nylon membrane. After overnight transfer, agarose clinging to the filters was removed by washing in 3×SSC and the filters were air dried and baked for 2 h under vacuum at 80 °C. Baked filters were prehybridized in 500 ml 6×SSC, 1×Denhardt's solution (0.02% bovine serum albumin, 0.02% polyvinyl pyrollidone, 0.02% Ficoll), 0.3% SDS and 100 μ g ml⁻¹ denatured salmon sperm DNA at 65 °C for 18 h. Prehybridized filters were washed extensively at room temperature in 3×SSC until no evidence of SDS remained. Excess liquid was removed from the filters by blotting on Whatman 3MM paper and damp filters were placed individually in heat-sealable plastic bags. 5 ml of hybridization solution (6×SSC, 1×Denhardt's solution, 0.1% SDS, 100 μ g ml⁻¹ denatured salmon sperm DNA) containing approximately 5×10⁶ c.p.m. of nick-translated G8 DNA (specific activity $\sim 2 \times 10^8$ c.p.m. μg^{-1} ²⁴ was added to each bag which was then sealed and placed at 65 °C for 24-48 h. Filters were emoved from the bags and washed at 65 °C for 30 min each in 3×SSC, 2×SSC, 1×SSC and 0.3×SSC. The filters were dired and exposed to X-ray film (Kodak XR-5) at -70 °C with a Dupont Cronex intensitying screen for 1 to 4 days. The haplotypes observed in each individual Were determined from the alleles seen for each *Hind*III RFLP (site 1 and 2) as explained in Fig. 4.

Gusella et al (1983) Nature. doi:10.1038/306234a0

Cell, Vol. 72, 971-983, March 26, 1993, Copyright © 1993 by Cell Press

A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington's Disease Chromosomes

The Huntington's Disease Collaborative Research Group*

Summary

The Huntington's disease (HD) gene has been mapped in 4p16.3 but has eluded identification. We have used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect. A new gene, IT15, isolated using cloned trapped exons from the target area contains a polymorphic trinucleotide repeat that is expanded and unstable on HD chromosomes. A (CAG), repeat longer than the normal range was observed on HD chromosomes from all 75 disease families examined, comprising a variety of ethnic backgrounds and 4p16.3 haplotypes. The (CAG), repeat appears to be located within the coding sequence of a predicted ~348 kd protein that is widely expressed but unrelated to any known gene. Thus, the HD mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy. and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

Introduction

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor disturbance, cognitive loss, and psychiatric manifestations (Martin and Gusella, 1986). It is inherited in an autosomal dominant fashion and affects ~ 1 in 10,000 individuals in most populations of European origin (Harper et al., 1991). The hallmark of HD is a distinctive choreic movement disorder that typically has a subtle, insidious onset in the fourth to fifth decade of life and gradually worsens over a course of 10 to 20 years until death. Occasionally, HD is expressed in juveniles, typically manifesting with more severe symptoms including rigidity and a more rapid course. Juvenile onset of HD is associated with a preponderance of paternal transmission of the disease allele. The neuropathology of HD also displays a distinctive pattern, with selective loss of neurons that is most severe in the caudate and putamen. The biochemical basis for neuronal death in HD has not yet been explained, and there is consequently no treatment effective in delaying or preventing the onset and progression of this devastating disorder.

The genetic defect causing HD was assigned to chromosome 4 in 1983 in one of the first successful linkage analyses using polymorphic DNA markers in humans (Gusella

Cell, Vol. 72, 971-983, March 26, 1993, Copyright © 1993 by Cell Press

A Novel Gene Containing a Trinucleotide Repe That Is Expanded and Unstable on Huntington's Disease Chromosomes

The Huntington's Disease Collaborative Research Group*

Summary

The Huntington's disease (HD) gene has been mapped in 4p16.3 but has eluded identification. We have used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect. A new gene, IT15, isolated using cloned trapped exons from the target area contains a polymorphic trinucleotide repeat that is expanded and unstable on HD chromosomes. A (CAG), repeat longer than the normal range was observed on HD chromosomes from all 75 disease families examined, comprising a variety of ethnic backgrounds and 4p16.3 haplotypes. The (CAG), repeat appears to be located within the coding sequence of a predicted ~348 kd protein that is widely expressed but unrelated to any known gene. Thus, the HD mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy. and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

Introduction

Huntington's disease (HD) is a progre ative disorder characterized by motor tive loss, and psychiatric manifestati sella, 1986). It is inherited in an a fashion and affects ~ 1 in 10,000 indiv lations of European origin (Harper et mark of HD is a distinctive choreic that typically has a subtle, insidious of fifth decade of life and gradually wo of 10 to 20 years until death. Occ. pressed in juveniles, typically manife vere symptoms including rigidity and Juvenile onset of HD is associated w of paternal transmission of the disea pathology of HD also displays a dist selective loss of neurons that is most s and putamen. The biochemical basis in HD has not yet been explained. quently no treatment effective in de the onset and progression of this de

The genetic defect causing HD was some 4 in 1983 in one of the first succ ses using polymorphic DNA markers

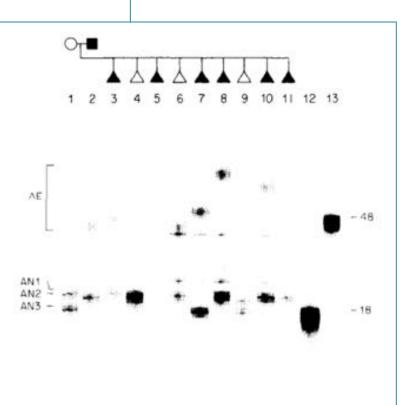


Figure 6. PCR Analysis of the (CAG), Repeat in a Venezuelan HD Sibship with Some Offspring Displaying Juvenile Onset

Results of PCR analysis of a sibship in the Venezuelan HD pedigree are shown. Affected individuals are represented by closed symbols. Progeny are shown as triangles, and the birth order of some individuals has been changed for confidentiality. AN1, AN2, and AN3 mark the positions of the allelic products from normal chromosomes. AE marks the range of PCR products from the *HD* chromosome. The intensity of background constant bands, which represent a useful reference for comparison of the above PCR products, varies with slight differences in PCR conditions. The PCR products from cosmids L191F1 and GUS72-2130 are loaded in lanes 12 and 13 and have 18 and 48 CAG repeats, respectively.

analysis

Human disease genes

Gerardo Jimenez-Sanchez*, Barton Childs* & David Valle*†

* Department of Pediatrics, McKusick-Nathans Institute of Genetic Medicine, and † Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA

The complete human genome sequence will facilitate the identification of all genes that contribute to disease. We propose that the functional classification of disease genes and their products will reveal general principles of human disease. We have determined functional categories for nearly 1,000 documented disease genes, and found striking correlations between the function of the gene product and features of disease, such as age of onset and mode of inheritance. As knowledge of disease genes grows, including those contributing to complex traits, more sophisticated analyses will be possible; their results will yield a deeper understanding of disease and an enhanced integration of medicine with biology.

o test the proposal that classifying disease genes and their products according to function will provide general insight into disease processes^{1,2}, we have compiled and classified a list of disease genes. To assemble the list, we began with 269 genes identified in a survey of the 7th edition of *Metabolic and Molecular Bases of Inherited Disease*². We then searched the 'morbid map' and allelic variants listed in the Online *Mendelian Inheritance in Man*³ (OMIM), an online resource documenting human diseases and their associated genes (www.ncbi.nlm.nih.gov), and increased the total disease gene set to 923. This sample included genes that cause monogenic disease (97% of the sample) and genes that increase susceptibility for complex traits. We excluded genes associated only with somatic genetic disease (such as non-inherited forms of cancer) or the mitochondrial genome.

Functional classification

We categorized each disease gene according to the function of its

Human disease genes Jimenez-Sanchez, G., Childs, B. & Valle, D. (2001) Nature 409, 853–855

Part 2:

Post-genome Inherited Dieases

"Genome-wide linkage analysis has also been carried out for many common diseases and quantitative traits, for which the aforementioned characteristics of Mendelian diseases might not apply. In some cases, genomic regions that show significant linkage to the disease have been identified, leading to the discovery of variants that contribute to susceptibility to diseases such as inflammatory bowel disease (IBD), schizophrenia and type 1 diabetes.

However, for most common diseases, linkage analysis has achieved only limited success, and the genes discovered usually explain only a small fraction of the overall heritability of the disease."

Genome-wide association studies for common diseases and complex traits Hirschhorn and Daly (2005) Nature Review Genetics

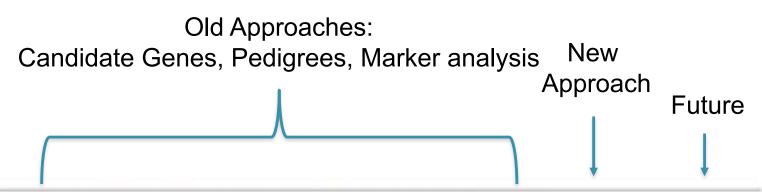


Table 1 Approaches to identifying variants underlying complex traits and common diseases

Potential advantages	Association*	Resequencing*	Linkage ¹	Admixture ²	Missense SNPs ¹	Association	Resequencing
No prior information regarding gene function required	-	-	+	+	*	+	+
Localization to small genomic region	+	+	-	-	+	+	+
Inexpensive	+	-	+	+	+/	-	Prohibitive
Families not required	+	+	-	+	+	+	+
No assumptions necessary regarding type of variant involved	+	D	+	+	T	+	+
Not susceptible to effects of stratification ⁸	-/+	-/+	+	*	-/+	-/+	-/+
No requirement for variation of allele frequency among populations	+	+	+	-	+	+	+
Sufficient power to detect common alleles (MAFs>5%) of modest effect	+	-	-/+	*	•	+	+
Ability to detect rare alleles (MAFs<1%)	-	+	+	-	÷.	÷	+
Reasonable track record for common diseases	+	-/+	+/-	N/A	N/A	N/A	N/A
Tools for analysis available	+	+	+	+	+	+/-	- 1

*Candidate-gene studies. *Genome-wide studies. *Association and resequencing studies are immune to stratification if they use family-based designs. Symbols indicate whether the potential advantage in the left column applies completely (+), partially (+/-), weakly (-/+) or not at all (-). MAF, minor allele frequency; N/A, not yet attempted.

Genome-wide association studies for common diseases and complex traits Hirschhorn and Daly (2005) Nature Review Genetics

Genome Wide Association (GWAS)

	SNP.
mmmm	Case
	Cou
	210
	Frec 52.6
mmmmm	Con
	Cou
	267
	24000.000
	Fred
Jadaaaaaaaaaa	44.6

SNP1	SNP2
Cases	Cases
Count of G:	Count of G:
2104 of 4000	1648 of 4000
Frequency of G: 52.6%	Frequency of G: 41.2%
Controls	Controls
Count of G:	Count of G:
2676 of 6000	2532 of 6000
Frequency of G: 44.6%	Frequency of G: 42.2%

SNP ...

Repeat for all SNPs

Are these significant differences in frequencies?

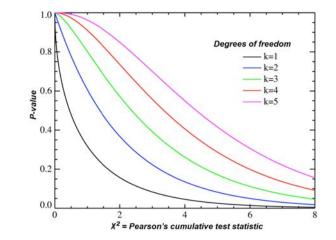
Pearson's Chi-squared test

The value of the test-statistic is

$$\chi^2 = \sum_{i=1}^n rac{(O_i - E_i)^2}{E_i} = N \sum_{i=1}^n rac{(O_i/N - p_i)^2}{p_i}$$

where

 χ^2 = Pearson's cumulative test statistic, which asymptotically approaches a χ^2 distribution.


 O_i = the number of observations of type *i*.

N = total number of observations

 $E_i = N p_i$ = the expected (theoretical) frequency of type i, asserted by the null

hypothesis that the fraction of type i in the population is p_i

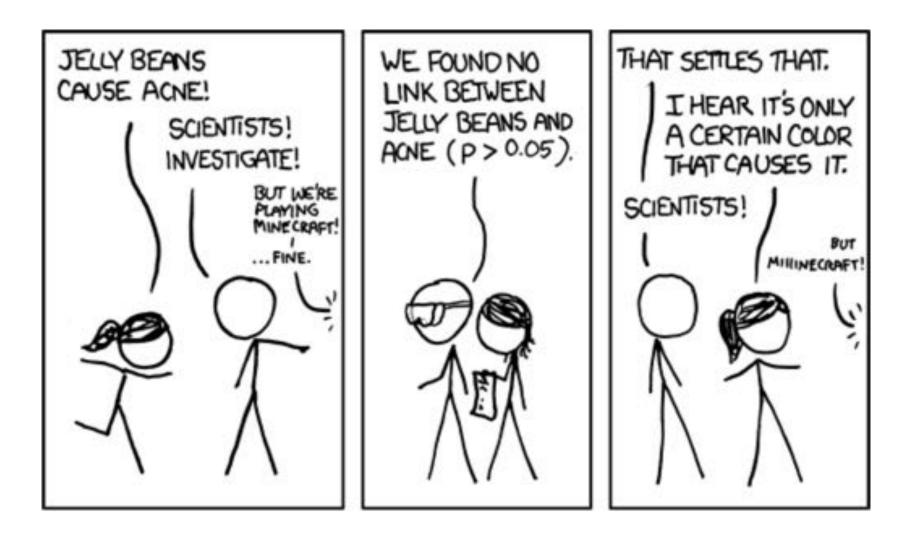
n = the number of cells in the table.

$$\mathbb{P}(\chi_P^2(\{p_i\}) > T) \sim C \int_{\sum_{i=1}^{m-1} y_i^2 > T} \left\{ \prod_{i=1}^{m-1} dy_i
ight\} \prod_{i=1}^{m-1} \exp \left[-rac{1}{2} \left(\sum_{i=1}^{m-1} y_i^2
ight)
ight]$$

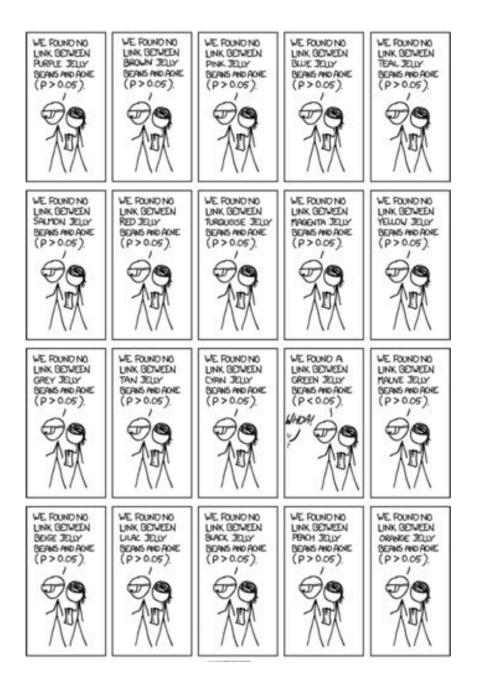
	has G	Not G	Marginal Row Totals
Cases	2104 (1912) [19.28]	1896 (2088) [17.66]	4000
Controls	2676 (2868) [12.85]	3324 (3132) [11.77]	6000
Marginal Column Totals	4780	5220	10000 (Grand Total

Cases/hasG expected: 4000 * (4780/10000) = 1912 expected Cases/hasG squared deviation: $(2103 - 1912)^2 / 1912 = 19.28$ deviation

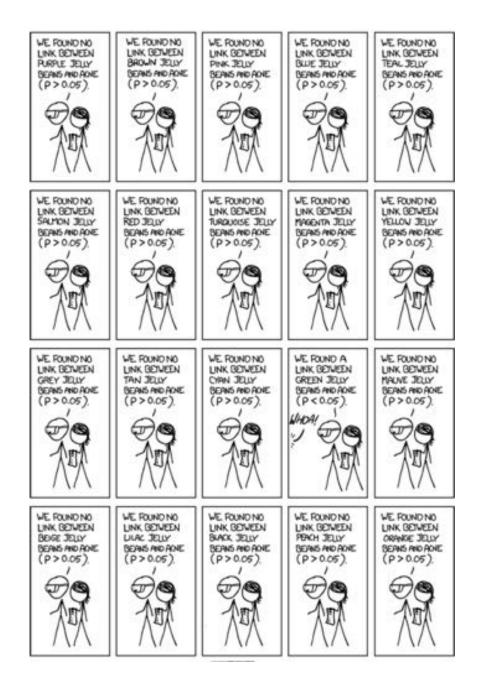
The chi-square statistic is 19.28+17.66+12.85+11.77 = 61.56. The p-value is 5e-15


Genome Wide Association (GWAS)

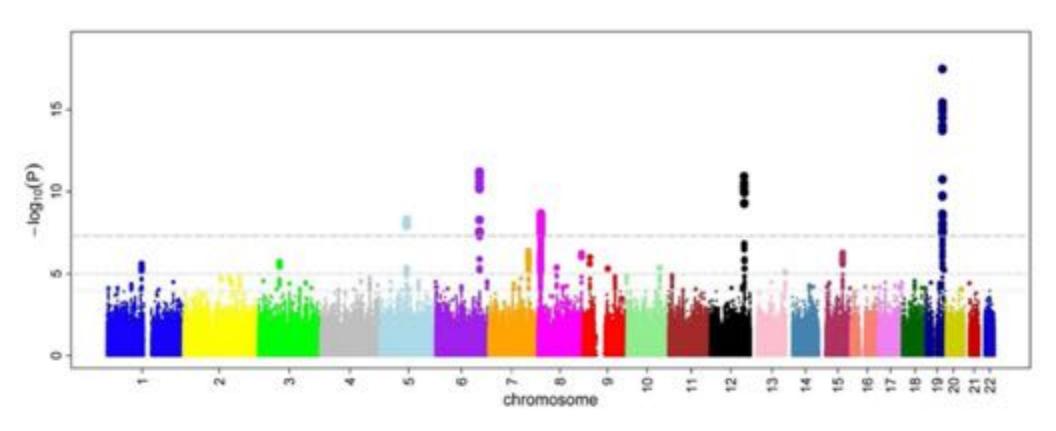
	SNP1	SNP2	SNP
	Cases Count of G: 2104 of 4000	Cases Count of G: 1648 of 4000	Repeat for all SNPs
	Frequency of G: 52.6%	Frequency of G: 41.2%	
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20			
	Controls Count of G: 2676 of 6000	Controls Count of G: 2532 of 6000	
	Frequency of G: 44.6%	Frequency of G: 42.2%	
22 22 28 28 28 28 28 28 28 28 28 28 28 28 28 29 29	P-value: 5.0 · 10 ^{·15}	P-value: 0.33 ←	Chi-squared or similar test


Genome Wide Association (GWAS)

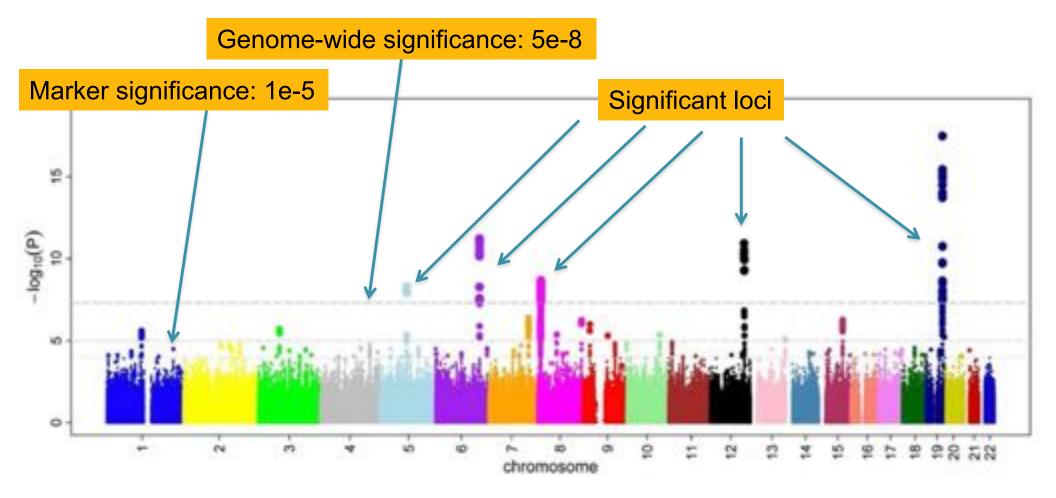
	SNP1	SNP2	SNP
	Cases Count of G: 2104 of 4000	Cases Count of G: 1648 of 4000	Repeat for all SNPs
))))))))))))))))((Frequency of G: 52.6%	Frequency of G: 41.2%	
GC CC GC GC GC GC GC GC CC GC GC GC GC GC GC GC GC GC GC GC GC			With a (much) larger population, this might be a significant
	Controls Count of G: 2676 of 6000	Controls Count of G: 2532 of 6000	difference in rate: 25320/60000 => p = 5e-7
	Frequency of G: 44.6%	Frequency of G: 42.2%	
22 22 28 28 28 28 28 29 29 29 28 28 28 28 29 29 29	P-value: 5.0 · 10 ^{·15}	P-value: 0.33 ←	Chi-squared or similar test


The curse of multiple testing

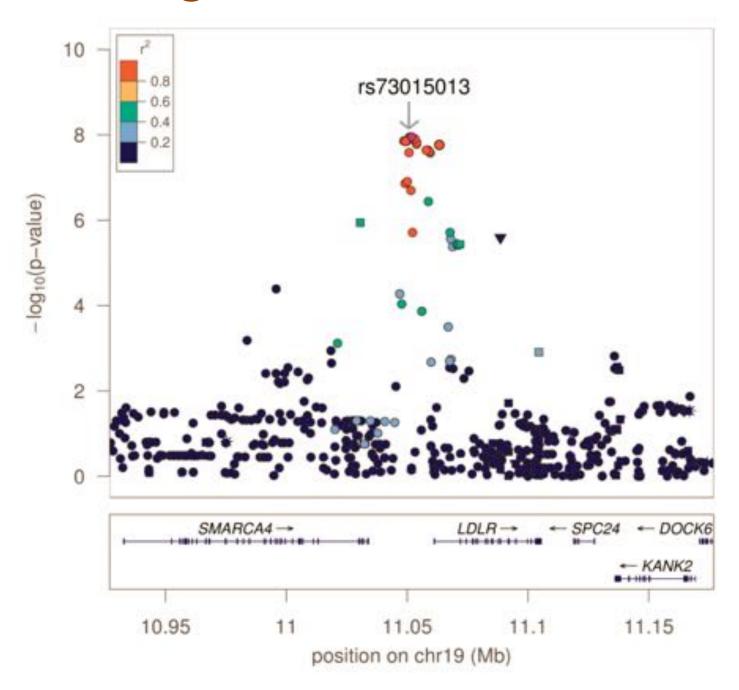
The curse of multiple testing



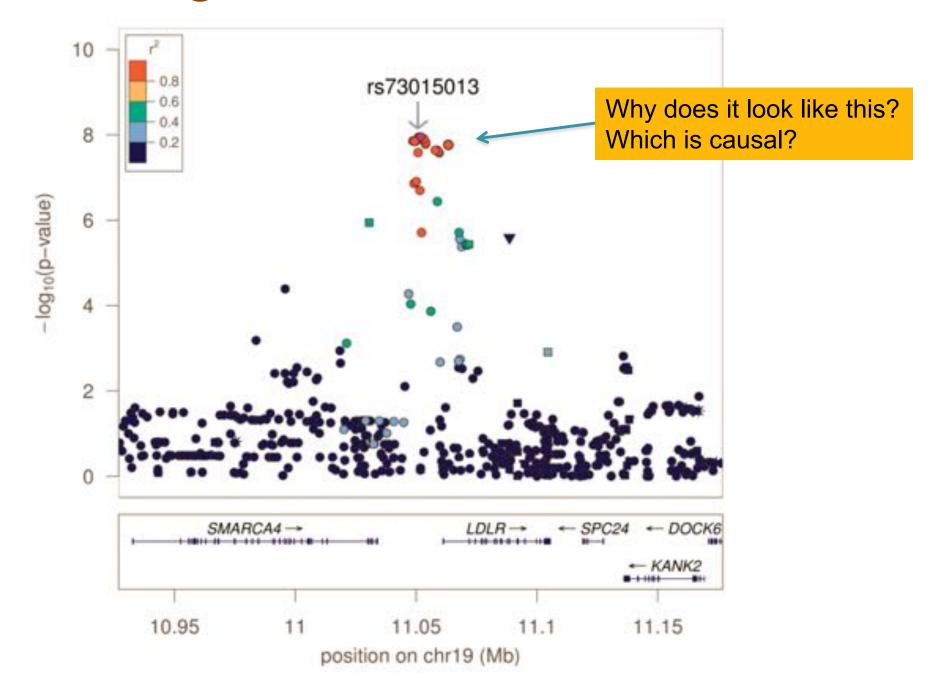
The curse of multiple testing



Manhattan Plot


Four Novel Loci (19q13, 6q24, 12q24, and 5q14) Influence the Microcirculation In Vivo Ikram et al (2010) PLOS Genetics. doi: 10.1371/journal.pgen.1001184

Manhattan Plot



Four Novel Loci (19q13, 6q24, 12q24, and 5q14) Influence the Microcirculation In Vivo Ikram et al (2010) PLOS Genetics. doi: 10.1371/journal.pgen.1001184

Regional Association Plot

Regional Association Plot

First published GWAS

Complement Factor H Polymorphism in Age-Related Macular Degeneration

Robert J. Klein,¹ Caroline Zeiss,^{2*} Emily Y. Chew,^{3*} Jen-Yue Tsai,^{4*} Richard S. Sackler,¹ Chad Haynes,¹ Alice K. Henning,⁵ John Paul SanGiovanni,³ Shrikant M. Mane,⁶ Susan T. Mayne,⁷ Michael B. Bracken,⁷ Frederick L Ferris,³ Jurg Ott,¹ Colin Barnstable,² Josephine Hoh⁷†

Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. We report a genome-wide screen of 96 cases and 50 controls for polymorphisms associated with AMD. Among 116,204 single-nucleotide polymorphisms genotyped, an intronic and common variant in the complement factor H gene (*CFH*) is strongly associated with AMD (nominal *P* value <10⁻⁷). In individuals homozygous for the risk allele, the likelihood of AMD is increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402. This polymorphism is in a region of CFH that binds heparin and C-reactive protein. The *CFH* gene is located on chromosome 1 in a region repeatedly linked to AMD in family-based studies.

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Its incidence is increasing as the elderly population expands (J). AMD is characterized by progressive destruction of the retina's central region (macula), causing central field visual loss (2). A key feature of AMD is the formation of extracellular deposits called drusen concentrated in and around the macula behind the retina between the retinal pigment epithelium (RPE) and the choroid. To date, no therapy for this disease has proven to be broadly effective. Several risk factors have been linked to AMD, including age, smoking, and family history (3). Candidate-gene studies have not found any genetic differences that can account for a large proportion of the overall prevalence (2). Family-based whole-genome linkage scans have identified chromosomal regions that show evidence of linkage to AMD (4-8), but the linkage areas have not been resolved to any causative mutations.

Like many other chronic diseases, AMD is caused by a combination of genetic and environmental risk factors. Linkage studies are not as powerful as association studies for the identification of genes contributing to the risk for common, complex diseases (9). However, linkage studies have the advantage of searching the whole genome in an unbiased manner without presupposing the involvement of particular genes. Searching the whole genome in an association study requires typing 100,000 or more single-nucleotide polymorphisms (SNPs) (10). Because of these technical demands, only one whole-genome association study, on susceptibility to myocardial infarction, has been published to date (11).

Study design. We report a whole-genome case-control association study for genes involved in AMD. To maximize the chance of success, we chose clearly defined phenotypes for cases and controls. Case individuals exhibited at least some large drusen in a quantitative photographic assessment combined with evidence of sight-threatening AMD (geographic atrophy or neovascular AMD). Control individuals had either no or only a few small drusen. We analyzed our data using a statistically conservative approach to correct for the large number of SNPs tested, thereby guaranteeing that the probability of a false positive is no greater than our reported *P* values.

We used a subset of individuals who participated in the Age-Related Eye Disease Study (AREDS) (12). From the AREDS

¹Laboratory of Statistical Genetics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. ²Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA. ³National Eye Institute, Building 10, CRC, 10 Center Drive, Bethesda, MD 20892-1204, USA. ⁵Biological Imaging Core, National Eye Institute, 9000 Rockville Pike, Bethesda, MD 20892-1204, USA. ⁵Biological Imaging Core, National Eye Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA. ⁵The EMMES Corporation, 401 North Washington Street, Suite 700, Rockville MD 20850, USA. ⁶W. M. Keck Facility, Yale University, 300 George Street, Suite 201, New Haven, CT 06511, USA. ⁷Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA.

*These authors contributed equally to this work.
†To whom correspondence should be addressed.
E-mail: josephine.hoh@yale.edu

First published GWAS

Complement Factor H Polymorphism in Age-Related Macular Degeneration

Robert J. Klein,¹ Caroline Zeiss,²⁺ Emily Y. Chew,³⁺ Jen-Yue Tsai,⁴⁺ Richard S. Sackler,¹ Chad Haynes,¹ Alice K. Henning,⁵ John Paul SanGiovanni,³ Shrikant M. Mane,⁶ Susan T. Mayne,⁷ Michael B. Bracken,⁷ Frederick L Ferris,³ Jurg Ott,¹ Colin Barnstable,² Josephine Hoh⁷†

Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. We report a genome-wide screen of 96 cases and 50 controls for polymorphisms associated with AMD. Among 116,204 single-nucleotide polymorphisms genotyped, an intronic and common variant in the complement factor H gene (*CFH*) is strongly associated with AMD (nominal *P* value <10⁻⁷). In individuals homozygous for the risk allele, the likelihood of AMD is increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402. This polymorphism is in a region of CFH that binds heparin and C-reactive protein. The *CFH* gene is located on chromosome 1 in a region repeatedly linked to AMD in family-based studies.

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Its incidence is increasing as the elderly population expands (J). AMD is characterized by progressive destruction of the retina's central region (macula), causing central field visual loss (Z). A key feature of AMD is the formation of extracellular deposits called drusen concentrated in and around the macula behind the retina between the retinal pigment epithelium (RPE) and the choroid. To date, no therapy for this disease has proven to be broadly effective. Several risk factors have been linked to AMD, including age, smoking, and family history (J). Candidate-gene studies have not found any genetic differences that ca account for a large proportion of the overa prevalence (2). Family-based whole-genom linkage scans have identified chromosom regions that show evidence of linkage t AMD (4-8), but the linkage areas have n been resolved to any causative mutations.

Like many other chronic diseases, AMD caused by a combination of genetic and env ronmental risk factors. Linkage studies are n as powerful as association studies for th identification of genes contributing to the ris for common, complex diseases (9). Howeve linkage studies have the advantage of search ing the whole genome in an unbiased many without presupposing the involvement of particular genes. Searching the whole genome in an association study requires typing 100,000 or more single-nucleotide polymorphisms (SNPs) (10). Because of these technical demands, only one whole-genome association study, on susceptibility to myocardial infarction, has been published to date (11).

Study design. We report a whole-genome case-control association study for genes involved in AMD. To maximize the chance of

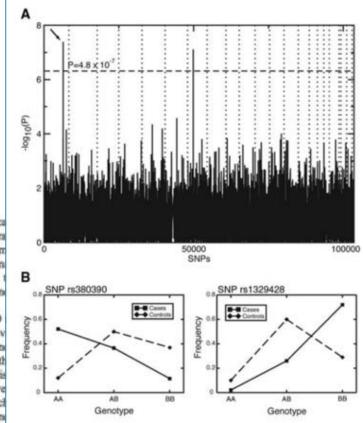
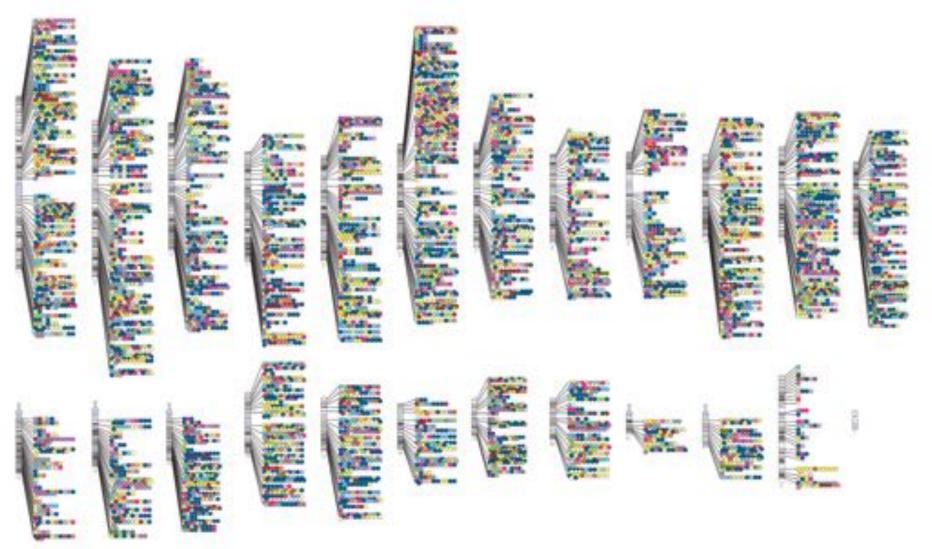



Fig. 1. (A) P values of genome-wide association scan for genes that affect the risk of developing AMD. -log10(p) is plotted for each SNP in chromosomal order. The spacing between SNPs on the plot is uniform and does not reflect distances between SNPs on the chromosomes. The dotted horizontal line shows the cutoff for P = 0.05 after Bonferroni correction. The vertical dotted lines show chromosomal boundaries. The arrow indicates the peak for SNP rs380390, the most significant association, which was studied further. (B) Variation in genotype frequencies between cases and controls.

GWAS Catalog

As of 2018-04-10, the GWAS Catalog contains 3,349 publications and 59,967 unique SNP-trait associations.

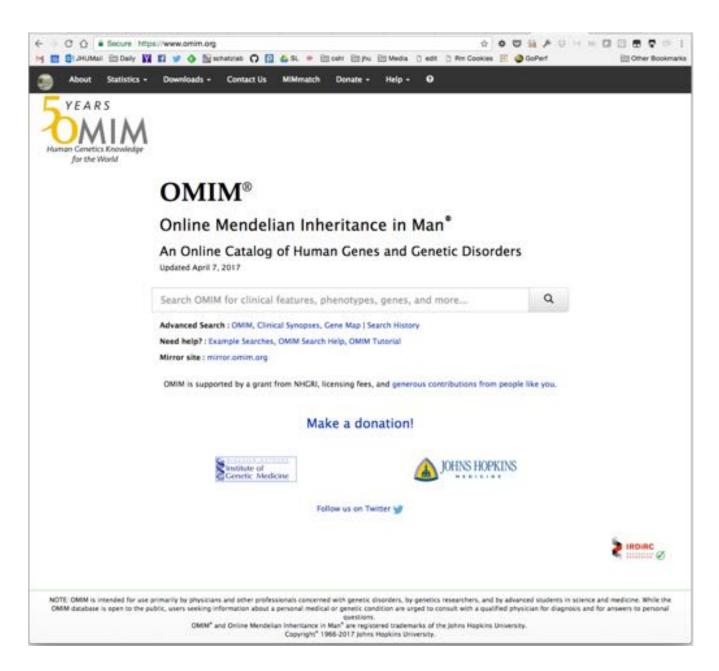
http://www.ebi.ac.uk/gwas/diagram

ClinVar

S NCBI Resource	s 🕑 How To 🕑		moschatz My NCBI Sign
ClinVar	ClinVar	Search ClinVar for gene symbols, H Advanced	HGVS expressions, condition
Home About *	Access - Hel	p • Submit • Statistics • FTP	*
ACTGATGGTATGGGG CAGGTACGGCTGTCA		GILLVAL	
CAGGGCTGGGCATAA CCATGGTGCATCTGA		Ginvar addregates information about d	enomic variation and its relationship to
GCAGGTTGGTATCAA GGCACTGACTCTCTC			
GGCACTGACTCTCTC			Related Sites
GGCACTGACTCTCTC Jsing ClinVar		Tools ACMG Recommendations for Reporting of	Related Sites ClinGen
GGCACTGACTCTCTC Jsing ClinVar Noout ClinVar		Tools ACMG Recommendations for Reporting of Incidental Findings	Contraction of the second s
GGCACTGACTCTCTC Jsing ClinVar About ClinVar Data Dictionary		Tools ACMG Recommendations for Reporting of	ClinGen
SGCACTGACTCTCTC Jsing ClinVar About ClinVar Data Dictionary Downloads/FTP site		Tools ACMG Recommendations for Reporting of Incidental Findings	ClinGen GeneReviews®
GGCACTGACTCTCTC Using ClinVar About ClinVar Data Dictionary Downloads/FTP site		Tools ACMG Recommendations for Reporting of Incidental Findings ClinVar Submission Portal	ClinGen GeneReviews® GTR®
	TGCCTATTGGTCTAT	Tools ACMG Recommendations for Reporting of Incidental Findings ClinVar Submission Portal Submissions	ClinGen GeneReviews® GTR® MedGen

Submitter highlights

We gratefully acknowledge those who have submitted data and provided advice during the development of ClinVar.

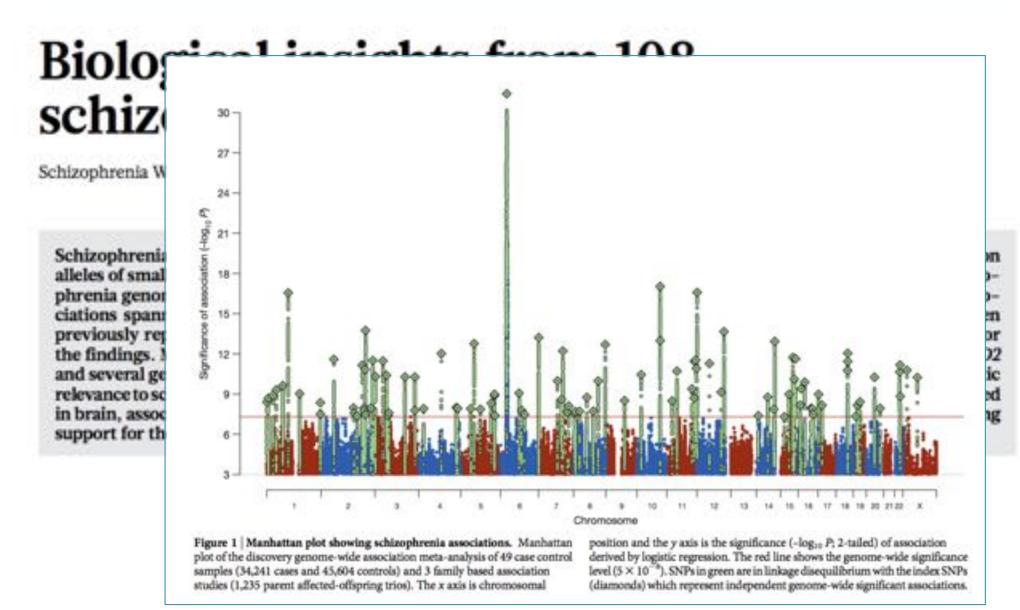

Subscribe to our RSS feed and follow us on Twitter to receive announcements of the release of new datasets.

More information about our submitters is available, as well as a list of submitters with the number of records each has submitted.

Disclaimer

- ClinVar is a freely accessible, public archive of reports of the relationships among human variations and phenotypes, with supporting evidence
- Currently has 295k
 mutations
- Most (179k) variants have uncertain affect, only 23 have "4 stars" of signifance

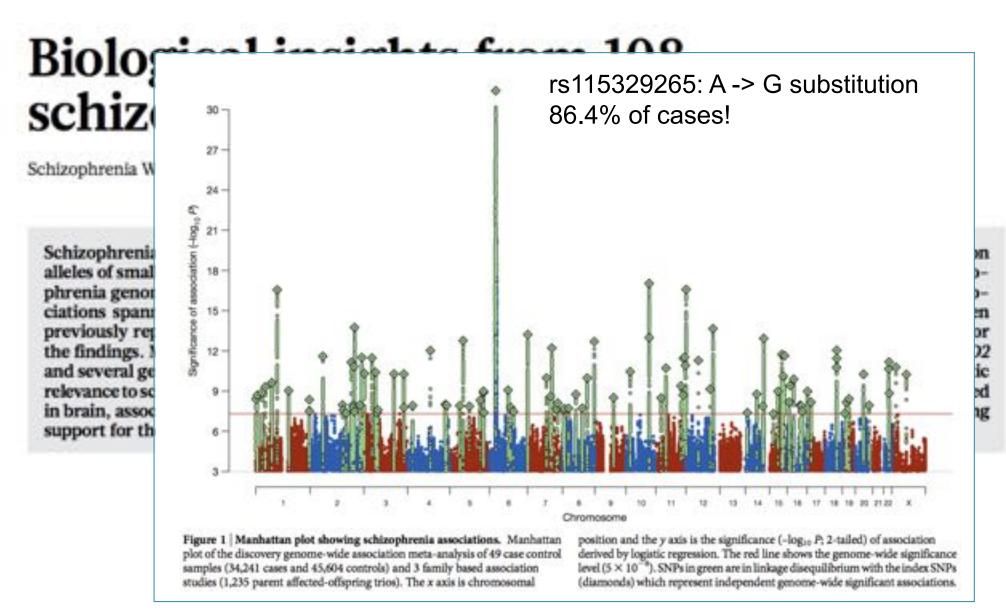
OMIM


- For many different diseases and phenotypes, lists what are all of the known genetic associations
- Has records for nearly all genes, ~5k different conditions with known molecular basis, ~1k with unknown basis, ~1k with questionable basis
- Started at JHU 50 years ago ☺

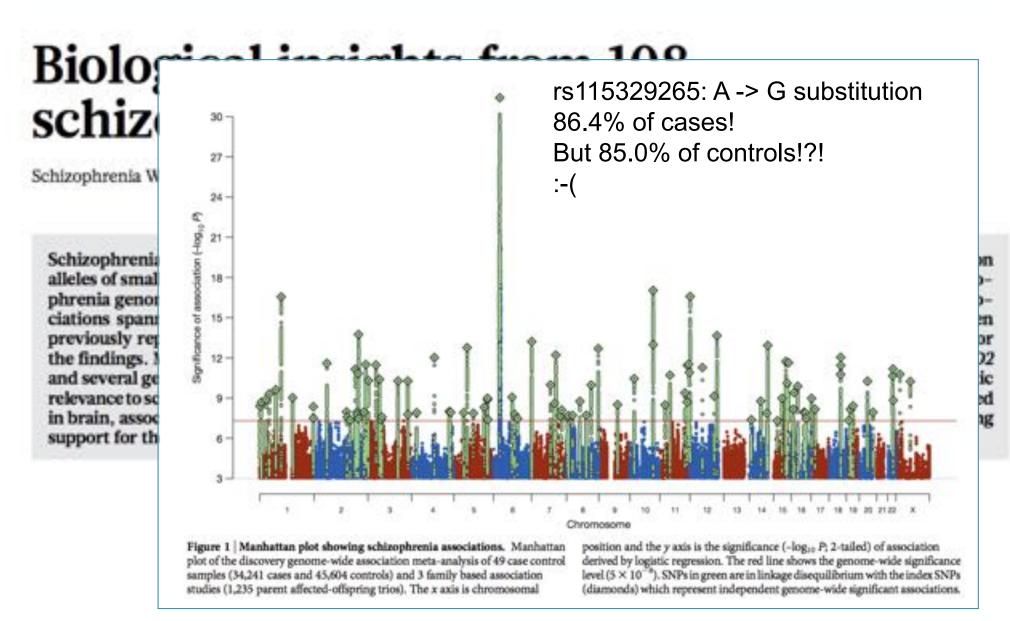
Biological insights from 108 schizophrenia-associated genetic loci

Schizophrenia Working Group of the Psychiatric Genomics Consortium*

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizo-phrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at *DRD2* and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.


Nature 511, 421–427 (24 July 2014) doi:10.1038/nature13595

ARTICLE


doi:10.1038/nature13595

doi:10.1038/nature13595

Nature 511, 421–427 (24 July 2014) doi:10.1038/nature13595

doi:10.1038/nature13595

Nature 511, 421–427 (24 July 2014) doi:10.1038/nature13595

Compared to the brains of healthy individuals, those of people with schizophrenia have higher expression of a gene called *C4*, according to a paper published in Nature today (January 27). The gene encodes an immune protein that moonlights in the brain as an eradicator of unwanted neural Schizo connections (synapses). The findings, which suggest increased synaptic pruning is a feature of the disease, are a direct extension of genome-wide association studies (GWASs) that pointed to the major histocompatibility Schi (MHC) locus as a key region associated with schizophrenia risk. allel phre "The MHC [locus] is the first and the strongest genetic association for ciati prev schizophrenia, but many people have said this finding is not useful," said the f and psychiatric geneticist Patrick Sullivan of the University of North Carolina rele in br School of Medicine who was not involved in the study. supp

-Ruth Williams, The Scientist

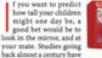
plot of the discovery genome-wide association meta-analysis of 49 case control samples (34,241 cases and 45,604 controls) and 3 family based association studies (1,235 parent affected-offspring trios). The x axis is chromosomal derived by logistic regression. The red line shows the genome-wide significance level (5×10^{-9}). SNPs in green are in linkage disequilibrium with the index SNPs (diamonds) which represent independent genome-wide significant associations.

Nature 511, 421-427 (24 July 2014) doi:10.1038/nature13595

GWAS In Crisis

Table 1. Replication and non-replication in associations found by GWA studies of complex diseases published until the end of 2006

Phenotype	Genome-wide asso	sciation study chi	aracteristics		Identified gene/SNPs	Replication status (January 2007)
	platform (SNPs/analyzed)	design	stratification control	n		
Age-related macular de- generation	Affymetrix 100k (116204/103611)	UCC; then sequencing of region	Genomic control, F-ratio	146	CFH/Intronic rs380390; then sequencing showing exonic rs106170 (Y420H) 2kb upstream of 41-kb haplotype block	Meta-analysis of 11 studies (n = 8,991): OR 2.49 and 6.15 (heterozygotes and homozygotes respectively), no large between study inconsistency in effect sizes; also replicated in large Dutch cohort (n = 5,681); several studies on Asian populations claim no association
Obesity	Affymetrix 100k (116204/86604)	Family-based, 2-stage, followed by mapping 100 neighboring SNPs	Family-based design	694, then up to 923	INSIG2/rs7566605 10kb upstream of the transcription start site	Replication in the same publication in 3 of 4 independent populations of n = 9,881 subjects with modest between-study heterogeneity; 7 more independent populations with over 21,000 subjects total failed to replicate the association: no effect and no heterogeneity across the independent replication teams
Parkinson disease	Perlegen (248535/198345)	Family-based, second stage with matched case-controls	Family-based design: matching at second stage; also genomic control	443 sib-pairs, then 664	Thirteen genes/ 13 different SNPs identified from analysis of both stages; none with genome- wide significance	Several small replication studies and a large collaborative consortium ($n = 12,208$) failed to replicate any of the 13 proposed SNPs; null results were consistent across the teams participating in the consortium
Myocardial infarction	Random gene-based (92788/67671)	UCC	None (just Japanese mationality)	752 (only 94 cases)	LTA/Haplotype of 5 SNPs (2 in LTA and 3 in adjucent genes); the two LTA SNPs had association in larger sample and then Thr26Asn had also functional assay support	Replication in the same publication in additional 1,133 cases and two control groups (n = 1,006 and 872); association not replicated in subsequent ISIS-4 case-control study and meta-analysis (n = 18,325) shows no association (non-significant OR 1.07 without significant between-study heterogeneity vs. 1.77 in originally proposed association for recessive model)
Age-related macular de- generation	Affymetrix 100k (116204/97824)	UCC; then sequencing of region	Genomic control, F-ratio	226	HTRA1/Intragenic rs10490924; then sequencing showing promoter rs11200638 6kb downstream	Independent study (n = 890) published in the same issue starting from dense mapping of locus showing consistent effects with OR 1.90 and 7.51 for heterozygotes and homozygotes, respectively


Non-Replication and Inconsistency in the Genome-Wide Association Setting Ioannidis (2007) Hum Hered 2007;64:203–213 https://doi.org/10.1159/000103512

Missing Heritability

The case of the missing heritability

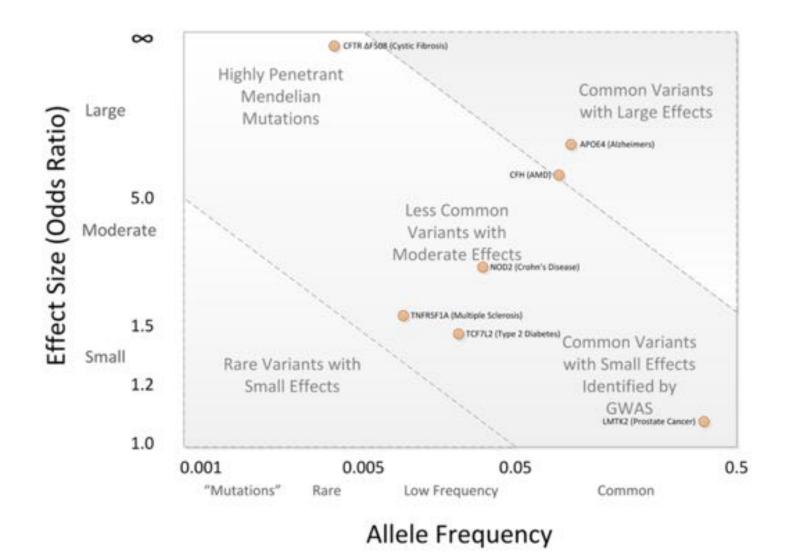
When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away.

estimated that bright is 80-90% heritable. So if 29 certimeters separate the tallest 5% of a population from the shortest, then genetics would account for as many as 27 of them.

This year, three groups of researchers¹⁻¹ scoured the genomes of huge populations (the largest study looked at more than 80.000 people) for genetic variants associated with the height differences. More than 40 turned up.

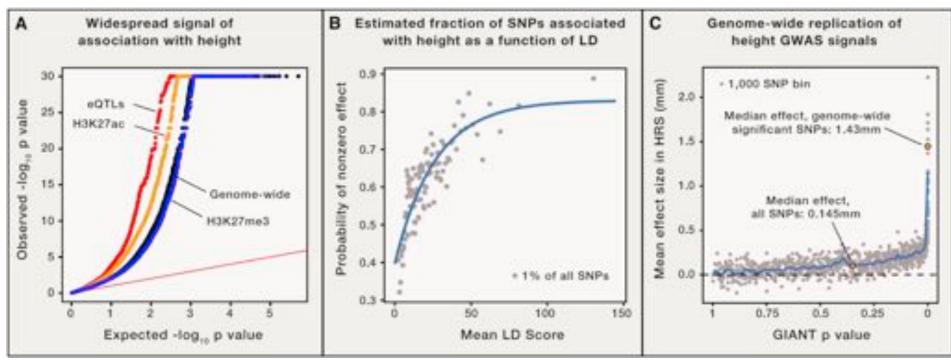
But there was a problem: the variants had tiny effects. Altogethen, they accounted for little more than 5% of height's heritability --just 6 centimetres by the calculations above. Even though these genome-wide association studies (GWAS) turned up doesn-of variants, they did "very" little of the prediction that you would do just by asking people how tall their parents are", asys lool Tünchharn at the Broad Institute in Cambridge, Massachusetts, who led one of the studies".

Height infl the only trait in which genes have gone missing, nor is it the most important. Studies looking at similarities between identical and fraternal twins estimate heriability at more than 90% for schizophrenia". And genetics makes a major contribution to disorders such as obseity, diabetes and heart disease. GWAS, one of the most cylobrated techniques of the genes involved (see "Where's the reward?", page 20). And to some extent they have, identifying more than 400 genetic variants that


contribute to a variety of traits and common diseases. But even when denens of genes have been likely to a musit, both the individual and cumulative effects are disappointingly small and nowhere near enough to explain earlier estimates of heritability. This the big topic in the genetics of common disease right now," says Francis Collon, former head of the National Human Genome Research Institute (NHCR) in Bethenda, Maryland. The unexpected results left researchers at a point "where we all had to scratch our heads and say, "Hish", be says.

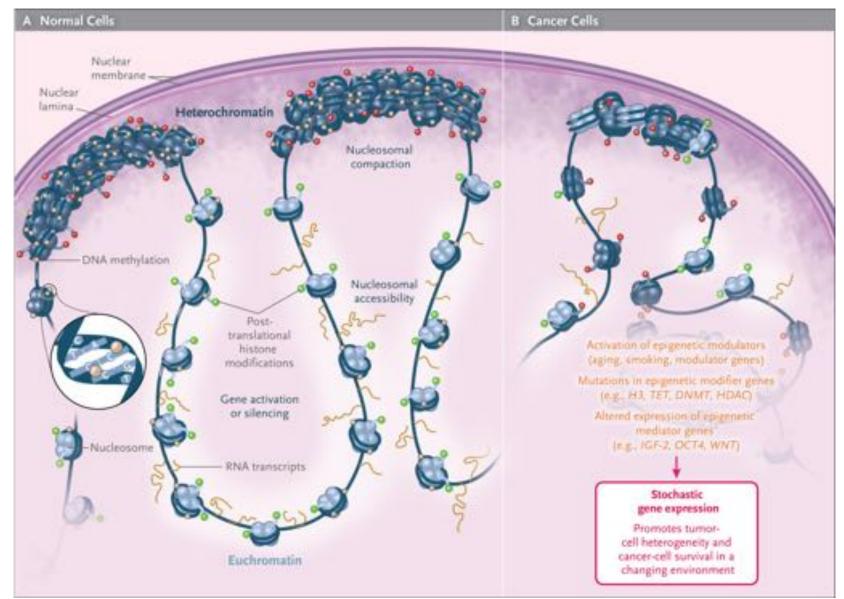
Although flummosed by this missing heritability, geneticitis remain optimistic that they can find more of it. "These are very early days, and there are things that are cloable in the next year or two that may well explain another sizeable chock of heritability" says Hirschhorn. So where might it be hiding? "Three groups of researchers scoured the genomes of huge populations (>30,000 people) for genetic variants associated with the height differences. More than 40 turned up. **But there was a problem: the variants had tiny effects.** Altogether, they accounted for little more than 5% of height's heritability"

- Rare, moderately penetrant or common, weakly penetrant variants?
- CNVs and SVs?
- Epistasis (multiple genes working together)?
- Epigenetic effects, especially in utero?

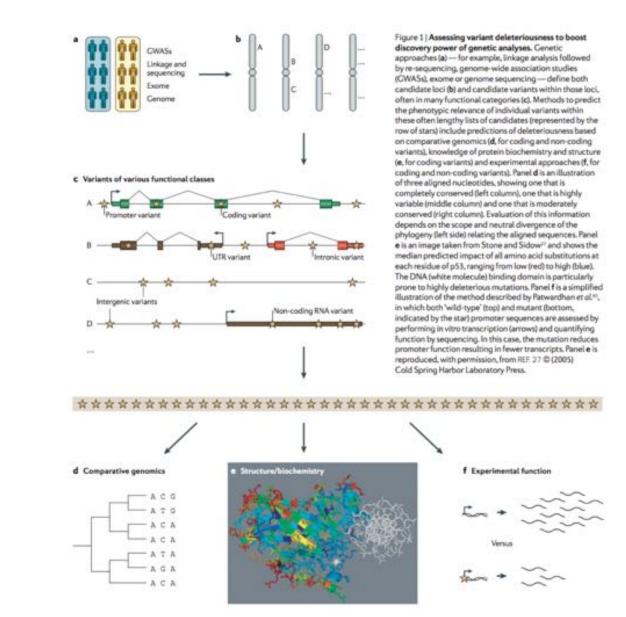

2008 Macmillan Publishers Limited, All rights seasoned

Penetrance & Allele Frequency

Penetrance: The proportion of individuals with a specific genotype who manifest the genotype at the phenotypic level.


Omnigenics

A central goal of genetics is to understand the links between genetic variation and disease. Intuitively, one might expect disease-causing variants to cluster into key pathways that drive disease etiology. But for complex traits, association signals tend to be spread across most of the genome—including near many genes without an obvious connection to disease. We propose that gene regulatory networks are sufficiently interconnected such that all genes expressed in disease-relevant cells are liable to affect the functions of core disease-related genes and that most heritability can be explained by effects on genes outside core pathways. We refer to this hypothesis as an "omnigenic" model.


An Expanded View of Complex Traits: From Polygenic to Omnigenic Boyle, Li, Pritchard (2017) Cell. https://doi.org/10.1016/j.cell.2017.05.038

Epigenetic Factors

The Key Role of Epigenetics in Human Disease Prevention and Mitigation Feinberg (2018) NEJM. doi: 10.1056/NEJMra1402513

Needles in stacks of needles

Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data Cooper & Shendure (2011) Nature Reviews Genetics.

Predicting Deleterious Amino Acid Substitutions

Pauline C. Ng^{1,2} and Steven Henikoff^{1,3,4}

¹Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ²Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA; ³Howard Hughes Medical Institute, Seattle, Washington 98109, USA

Many missense substitutions are identified in single nucleotide polymorphism (SNP) data and large-scale random mutagenesis projects. Each amino acid substitution potentially affects protein function. We have constructed a tool that uses sequence homology to predict whether a substitution affects protein function. SIFT, which sorts intolerant from tolerant substitutions, classifies substitutions as tolerated or deleterious. A higher proportion of substitutions predicted to be deleterious by SIFT gives an affected phenotype than substitutions predicted to be deleterious by SIFT gives an affected phenotype than substitutions predicted to be deleterious by substitution scoring matrices in three test cases. Using SIFT before mutagenesis studies could reduce the number of functional assays required and yield a higher proportion of affected phenotypes. SIFT may be used to identify plausible disease candidates among the SNPs that cause missense substitutions.

SIFT Key Idea: Substituting one amino acid for another with another with very similar biochemical properties is probably less significant that a more dissimilar substitution. Learn those similarities by comparing orthologs across species

Genome Research. 2001 May;11(5):863-74.

Resource

A probabilistic disease-gene finder for personal genomes

Mark Yandell,^{1,3,4} Chad Huff,^{1,3} Hao Hu,^{1,3} Marc Singleton,¹ Barry Moore,¹ Jinchuan Xing,¹ Lynn B. Jorde,¹ and Martin G. Reese²

¹Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, Utah 84112, USA; ²Omicia, Inc., Emeryville, California 94608, USA

VAAST (the Variant Annotation, Analysis & Search Tool) is a probabilistic search tool for identifying damaged genes and their disease-causing variants in personal genome sequences. VAAST builds on existing amino acid substitution (AAS) and aggregative approaches to variant prioritization, combining elements of both into a single unified likelihood framework that allows users to identify damaged genes and deleterious variants with greater accuracy, and in an easy-touse fashion. VAAST can score both coding and noncoding variants, evaluating the cumulative impact of both types of variants simultaneously. VAAST can identify rare variants causing rare genetic diseases, and it can also use both rare and common variants to identify genes responsible for common diseases. VAAST thus has a much greater scope of use than any existing methodology. Here we demonstrate its ability to identify damaged genes using small cohorts (n = 3) of unrelated individuals, wherein no two share the same deleterious variants, and for common, multigenic diseases using as few as 150 cases.

[Supplemental material is available for this article.]

VAAST Key Idea: Evaluate amino acid substitutions in evolution AND allele frequencies in 1000 genomes project

Genome Research 2011. doi:10.1101/gr.123158.111

A general framework for estimating the relative pathogenicity of human genetic variants

Martin Kircher^{1,5}, Daniela M Witten^{2,5}, Preti Jain^{3,4}, Brian J O'Roak^{1,4}, Gregory M Cooper³ & Jay Shendure¹

Current methods for annotating and interpreting human genetic variation tend to exploit a single information type (for example, conservation) and/or are restricted in scope (for example, to missense changes). Here we describe Combined Annotation-Dependent Depletion (CADD), a method for objectively integrating many diverse annotations into a single measure (C score) for each variant. We implement CADD as a support vector machine trained to differentiate 14.7 million high-frequency human-derived alleles from 14.7 million simulated variants. We precompute C scores for all 8.6 billion possible human single-nucleotide variants and enable scoring of short insertions-deletions. C scores correlate with allelic diversity, annotations of functionality, pathogenicity, disease severity, experimentally measured regulatory effects and complex trait associations, and they highly rank known pathogenic variants within individual genomes. The ability of CADD to prioritize functional, deleterious and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current single-annotation method.

comparable, making it difficult to evaluate the relative importance of distinct variant categories or annotations. Third, annotation methods trained on known pathogenic mutations are subject to major ascertainment biases and may not be generalizable. Fourth, it is a major practical challenge to obtain, let alone to objectively evaluate or combine, the existing panoply of partially correlated and partially overlapping annotations; this challenge will only increase in size as large-scale projects such as the Encyclopedia of DNA Elements (ENCODE)¹¹ continually increase the amount of relevant data available. The net result of these limitations is that many potentially relevant annotations are ignored, while the annotations that are used are applied and combined in *ad hoc* and subjective ways that undermine their usefulness.

Here we describe a general framework, Combined Annotation-Dependent Depletion (CADD), for integrating diverse genome annotations and scoring any possible human single-nucleotide variant (SNV) or small insertion-deletion (indel) event. The basis of CADD is to contrast the annotations of fixed or nearly fixed derived alleles in humans with those of simulated variants. Deleterious variants—that is, variants that reduce organismal fitness—are depleted by natural selection in fixed but not simulated variation. CADD therefore

CADD Key Idea: Evaluate amino acid substitutions AND allele frequencies in 1000 genomes project AND ENCODE regions AND ... (63 annotations total :)

A method for calculating probabilities of fitness consequences for point mutations across the human genome

Brad Gulko¹, Melissa J Hubisz², Ilan Gronau^{2,3} & Adam Siepel¹⁻³

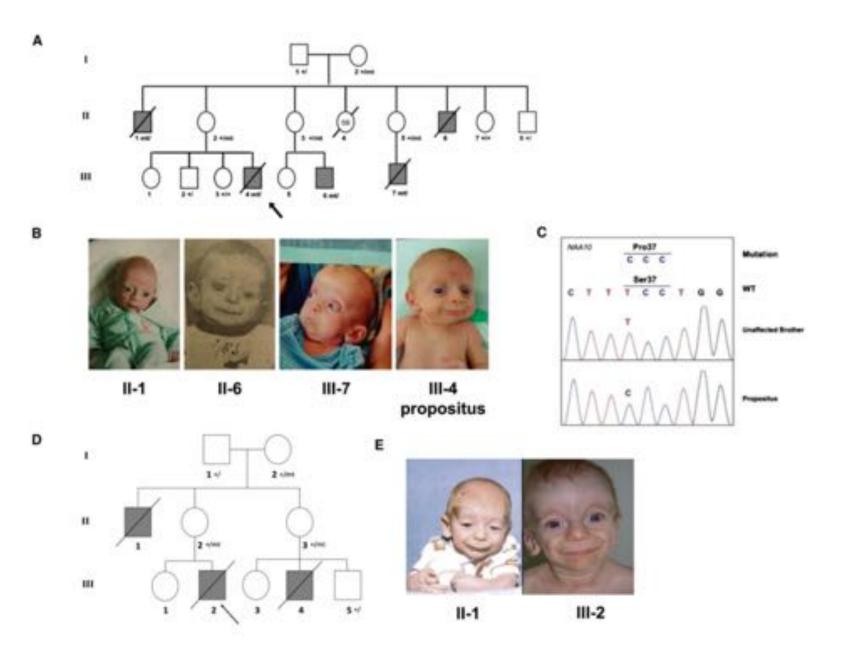
We describe a new computational method for estimating the probability that a point mutation at each position in a genome will influence fitness. These 'fitness consequence' (fitCons) scores serve as evolution-based measures of potential genomic function. Our approach is to cluster genomic positions into groups exhibiting distinct 'fingerprints' on the basis of high-throughput functional genomic data, then to estimate a probability of fitness consequences for each group from associated patterns of genetic polymorphism and divergence. We have generated fitCons scores for three human cell types on the basis of public data from ENCODE. In comparison with conventional conservation scores, fitCons scores show considerably improved prediction power for cis regulatory elements. In addition, fitCons scores indicate that 4.2-7.5% of nucleotides in the human genome have influenced fitness since the human-chimpanzee divergence, and they suggest that recent evolutionary turnover has had limited impact on the functional content of the genome.

roles¹⁶⁻¹⁹ by getting at fitness directly through observations of evolutionary change. In essence, the 'experiment' considered by these methods is the one conducted directly on genomes by nature over millennia, and the outcomes of interest are the presence or absence of fixed mutations.

These conservation-based methods, however, depend critically on the assumption that genomic elements are present at orthologous locations and maintain similar functional roles over relatively long evolutionary time periods. Evolutionary turnover may cause inconsistencies between sequence orthology and functional homology that substantially limit this type of analysis. Consequently, investigators have developed two major alternative strategies for the identification and characterization of functional elements. The first strategy is to augment information about interspecies conservation with information about genetic polymorphism^{20–28}. The shorter evolutionary time scales associated with intraspecies variation make this approach more robust to evolutionary turnover and less sensitive to errors in alignment and orthology detection. Polymorphic sites tend to be sparse along the genome however, so this approach requires some type

fitCons Key Idea: Evaluate amino acid substitutions AND allele frequencies in 1000 genomes project AND aggregate by ENCODE regions

Nature Genetics 47, 276-283 (2015) doi:10.1038/ng.3196


ARTICLE

Using VAAST to Identify an X-Linked Disorder Resulting in Lethality in Male Infants Due to N-Terminal Acetyltransferase Deficiency

Alan F. Rope,¹ Kai Wang,^{2,19} Rune Evjenth,³ Jinchuan Xing,⁴ Jennifer J. Johnston,⁵ Jeffrey J. Swensen,^{6,7} W. Evan Johnson,⁸ Barry Moore,⁴ Chad D. Huff,⁴ Lynne M. Bird,⁹ John C. Carey,¹ John M. Opitz,^{1,4,6,10,11} Cathy A. Stevens,¹² Tao Jiang,^{13,14} Christa Schank,⁸ Heidi Deborah Fain,¹⁵ Reid Robison,¹⁵ Brian Dalley,¹⁶ Steven Chin,⁶ Sarah T. South,^{1,7} Theodore J. Pysher,⁶ Lynn B. Jorde,⁴ Hakon Hakonarson,² Johan R. Lillehaug,³ Leslie G. Biesecker,⁵ Mark Yandell,⁴ Thomas Arnesen,^{3,17} and Gholson J. Lyon^{15,18,20,*}

We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering diseasecausing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans.

Am J Hum Genet. 2011 Aug 12;89(2):345. doi: 10.1016/j.ajhg.2011.05.017

(A) Pedigree drawing for family 1. The most recent deceased individual, III-4, is the most well-studied subject in the family and is indicated by an arrow. Genotypes are marked for those in which DNA was available and tested. The following abbreviations are used: SB, stillborn; +, normal variant; mt, rare mutant variant.

(B) Pictures of four affected and deceased boys in this family, showing the aged appearance.

(C) Sanger sequencing results of NAA10 in individual III-4 from family 1.

(D) Pedigree for family 2. Individual III-2 is the most well-studied subject in the family and is indicated by an arrow.

(E) Picture of individuals II-I and III-2 in family 2 at ~1 year of age.

Genetic Basis of Autism Spectrum Disorders

Complex disorders of brain development

•Characterized by difficulties in social interaction, verbal and nonverbal communication and repetitive behaviors.

•Have their roots in very early brain development, and the most obvious signs of autism and symptoms of autism tend to emerge between 2 and 3 years of age.

U.S. CDC identify around I in 68 American children as on the autism spectrum

•Ten-fold increase in prevalence in 40 years, only partly explained by improved diagnosis and awareness.

•Studies also show that autism is four to five times more common among boys than girls.

•Specific causes remain elusive

What is Autism?

http://www.autismspeaks.org/what-autism

Autism is NOT caused by vaccines

BARLY REPORT

Early report

Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children

A J Wakefield, S H Murch, A Anthony, J Linnell, D M Casson, M Malik, M Berelowitz, A P Dhillon, M A Thomson, P Harvey, A Valentine, S E Davies, J A Walker-Smith

Summary

Background We investigated a consecutive series of children with chronic enterocolitis and regressive developmental disorder.

Nethods 12 children (mean age 6 years (mage 3-50), 11 boys) were referred to a paediatric gastroenterology unit with a history of normal development. Notweed by loss of acquired skills, including language, together with diarnhoes and abdominal pain. Children underwent gastroenterstogical, and developmental assessment and review of developmental records. Neocolonoscopy and bioges sampling, magnetic-resonance imaging (MRI), electroencephalography (EG), and lumbar puncture were done under sedation. Barium follow-through radiography was done where possible. Biochemical, haematological, and immunological profiles were examined.

Findings Onset of behavioural symptoms was associaby the parents, with measles, mumps, and rul vaccination in eight of the 12 children, with mean infection in one child, and otitis media in a All and children had intestinal abnormalities. 100 lymphoid nodular hyperplasia to Histology showed patchy chronic ind in 11 children and reactive lies Inph erplasia ir ioural dis seven, but no granulomas. Be included autiam (nine), diaintegrative in sis (one), a possible maitis o). There were no postviral or vaccinal enc. malities and and EEG tests focal neurological add a laboratory results are significantly were normal, Abres raised urinary acid compared with ageulli, low haemoglobin in four matched contr in light in children ehidren.

intervation o identical bissociated gestrointestinal dense and medigmental regression in a group of previous preside environmental regens.

Lancet 190 151: 037-41 See Commentary page

Inflammatory Bowel Disease Study Group, University Departments of Modelene and Hatapathology (A. 2 Wainthiel Area, A Anthony M. Jurnett me, A P Ontion sectors, 8 E Dealer encrue) and the University Departments of Pseudiative Gastroentenology (S H Murch vol., D M Cesson were, M Mark secon M A Theorem, In A Waint Sector were), Child and Advisecent

Pepuhistry (M Excelosity Increarily, Neuroing) (F Harvey mor), and Radiology (A Valenting Incol, Royal Free Heepital and School of Medicine, London NWS 206, UK

Correspondence to: Dr A J Wakefield

THE LANCET - Vol 351 - February 28, 1998

Introduction

We saw several children who, after a pa of apparent normality, lost acquired skills, include lication. < CD They all had gastrointestinal, inptoma. luding abdominal pain, diarrhoea, and sting and, ome cases, food intolerance. We clinical. ings. and gastrointestinal feature of these c

Patients and metal is 12 children, constrained reards to an department of pacificating particularities of the second skills and interestant developments of the second skills and interestant symptoms statement, addominant size, bioasing and findintelescore, were invested. All children were admitted to the word because k, according and by their parents.

nical investigations

took histories including details of immunisations and covere to inference diseases, and assessed the children. In 11 covered history was obtained by the senior chickins (JW-8). Near the disease of productic assessments were done by resultant used (PH, MR) with RMS-4 enteria. Developmental historic descent of prospective developmental records from presents, health visions, and general practitioners. Four children dis not undergo psychiatric assessment in basepital, all had been issues d professionally chewhere, so these assessments were used as the hasis for their behavioral diagnosts.

After bowel perpendion, iterochonoscopy was performed by SHM or MAT under sedadon with midazolam and perhidine. Paired frozen and formalit-fixed macoual biopsy samples were taken from the terminal direct accessing, manyment, descending, and signesial colores, and from the rectaum. The procedure was recorded by video or rell images, and were compared with images of the previous server, consecutive pendiateix orderoscopies (Dare normal colorescopies and there on children with ulcerative colitic), in which the physician reported normal appearances in the terminal fraum. Bariam follow-theough radiography was penalise to some case.

Also under sofation, cerebral magnetic-resonance imaging (MIR), electrotencephalography (EEG) including visual, brein stem auditory, and sensory evolved potentials (where compliance made these possible), and harbur paceture ware dona.

Laboratory investigations

Throtid function, serum long-thain farty acids, and combrospinal-fluid lactate were measured to exclude known cataon of childhood neurodegenerative disease. Urisary methylenalmic acid was measured in random urise aangles from eight of the 12 childhon and 16 age-matched and see-matched normal controls, by a modification of a technique described previously.¹ Chemmograms were acamad digitally on computer, to analyse the methylenalenic-acid nones from cases and controls. Urisary methylenalenic-acid nones from cases and controls. Urisary methylenalenic-acid none from cases and controls occords were compared by a rew-sampler t two. Urisary crustinine was estimated by routine spectrophonometric same.

Children were screened for antiendomyseal antibodies and boys were screened for fragile-X if this had not been done

637

THE JOURNAL OF PEDIATRICS • www.jpeds.com

ARTICLES

Increasing Exposure to Antibody-Stimulating Proteins and Polysaccharides in Vaccines Is Not Associated with Risk of Autism

Frank DeStefano, MD, MPH¹, Cristofer S. Price, ScM², and Eric S. Weintraub, MPH¹

Objective To evaluate the association between autism and the level of immunologic stimulation received from vaccines administered during the first 2 years of life.

Study design We analyzed data from a case-control study conducted in 3 managed care organizations (MCOs) of 256 children with autism spectrum disorder (ASD) and 752 control children matched on birth year, sex, and MCO. In addition to the broader category of ASD, we also evaluated autistic disorder and ASD with regression. ASD diagnoses were validated through standardized in-person evaluations. Exposure to total antibody-stimulating proteins and polysaccharides from vaccines was determined by summing the antigen content of each vaccine received, as obtained from immunization registries and medical records. Potential confounding factors were ascertained from parent interviews and medical charts. Conditional logistic regression was used to assess associations between ASD outcomes and exposure to antigens in selected time periods.

Results The aOR (95% CI) of ASD associated with each 25-unit increase in total antigen exposure was 0.999 (0.994-1.003) for cumulative exposure to age 3 months, 0.999 (0.997-1.001) for cumulative exposure to age 7 months, and 0.999 (0.998-1.001) for cumulative exposure to age 2 years. Similarly, no increased risk was found for autistic disorder or ASD with regression.

Conclusion In this study of MCO members, increasing exposure to antibody-stimulating proteins and polysaccharides in vaccines during the first 2 years of life was not related to the risk of developing an ASD. (J Pediatr 2013;163:561-7).

The initial concerns that vaccines may cause astiann were related to the measles, mamps, and rubella vaccine' and thimerosal-containing vaccines.² In 2004, a comprehensive review by the Institute of Medicine concluded that the evidence favors rejection of possible causal associations between each of these vaccine types and autism.³ Nonetheless, concerns about a possible link between vaccines and autiam persist,⁴ with the latest concern centering on the number of vaccines administered to infants and young children.³ A recent survey found that parents' top vaccines-related concerns included administration of too many vaccines during the first 2 years of life, administration of too many vaccines in a single doctor visit, and a possible link between vaccines and learning disabilities, such as autism.⁶ All of the foregoing concerns were reported by 30%-36% of all survey respondents, and were reported by 53%-90% of parents who indicated that their children would receive some, but not all, of the vaccines on the recommended schedule. Another recent survey found that more than 10% of parents of young children refuse or delay vaccinations, with most believing that delaying vaccine does is after than providing them in accordance with the Centers for Disease Control and Prevention's recommended vaccination schedule.⁷

Using the number of antibody-stimulating proteins and polysaccharides contained in vaccines as a measure, we evaluated the association between the level of immunologic stimulation received from vaccines during the first 2 years of life and the risk of developing an autism spectrum disorder (ASD), including specific ASD subtypes.

Methods

We performed a secondary analysis of publicly available data from a case-control study designed to examine potential associations between exposure to thimerosal containing injections and ASD.⁶ The study was conducted in 3 managed care or

ganizations (MCOs). Data sources for the original study included MCO computerized data files, abstraction of biological mothers' and children's medical charts, and standardized telephone interviews with biological mothers. Gase children underwent standardized in-person assessment to verify case status.

AD	Autoric devider
ADI-II	Aufam Diagnostic Interview-Revised
ADOS:	Autism Diagnostic Observation Schedule
ABD	Autism spectrum disorder
MOD	Managed care organization
600	Social Communication Questionnaire

From the "Investmentation ballety Office, Gentere for Disease Control and Prevention, Allante, GA and "Mol Associates Inc, Berlinesia, MO Funded by a contract from the Contents for Disease

Cambro and Prevention to America's Health Insurance Parav (HHS), and the addocratics from HHS for Add Associates, inc. The tradings and cambrosis ar the study are thread the address and do not increasing insurance the address predicts of the Cambro Darting and Prevention. The authory declare in-conflicts of instrume.

MOD 34768 per fort notes Dayright 5 2012 Marry Inc.

Autism is NOT caused by vaccines

BARLY REPORT

Early report

THE JOURNAL OF PEDIATRICS . www.jpeds.com

ORIGINAL

The GMC hearings, which began in July 2007, centered on Wakefield's 1998 report. Many studies have found no connections [5,6], but sensational publicity caused immunization rates in the UK to drop more than 10 percent and have left lingering doubts among parents worldwide.

The GMC began investigating after learning from Deer that Wakefield had failed to declare he had been paid £55,000 to advise lawyers representing parents who believed that the vaccine had harmed their children. The GMC found that Wakefield had:

- Improperly obtained blood for research purposes from normal children attending his son's birthday party, paid them £5 for their discomfort, and <u>later joked during a</u> <u>lecture about having done this</u>.
- Subjected autistic children to colonoscopy, lumbar punctures, and other tests without approval from a research review board.
- · Failed to disclose that he had filed a patent for a vaccine to compete with the MMR
- Starting a child on an experimental product called Transfer Factor, which he planned to market.

(SH Murch ve, O M Cleaner we)r, M Mark sec, M A Thereson ren, JA Wahar Smith ranging, Child and Adolessent Psychiatry (M Environment Security (P Networking (P Network rent), and Radialings (A Valentine mont), Skyal Pres Hospital and School of Medicine, London NW3 296, KK Correspondence to: Dr A J Wahafield	and common. Urinary meritylmalonic-acid concentrations in patients and common were compared by a two-sample <i>t</i> test. Urinary creatilities was estimated by routine spectrophotometric many. Galidhers were screened for antiendomysed antibodies and boys were screened for fragile-X if this had not been done		ADI-8 Autiam Diagnostic Interview-Revised ADDS Autiam Diagnostic Otwanation Schedule ASD Autiam spectrum disorder MCO Managed care organisation SICO Social Communication Duestonnere	Associates, Inc. The findings and conductors in the study are Toxic of the utility of the Carlos and do-tot reconstri- regoment the obtain profiler of the Carlos for Disease Carlos and Meximitation, the utilities declares no contribute of interest.
THE LANCET - Vol 101 - Felesary 28, 1998 637				

Autism is NOT caused by antidepressants

Research

JAMA | Original Investigation

Association Between Serotonergic Antidepressant Use During Pregnancy and Autism Spectrum Disorder in Children

Hilary K. Brown, PhD, Joel G. Ray MD, MSc. FRCPC, Andrew S. Wilton, MSc. Yona Lumiky, PhD, CPtych, Tara Gomes, MHSc. Simone N. Vigod, MD, MSc. FRCPC

ENFORMANCE Previous observations of a higher risk of child autiam spectrum disorder with senstonengic antidepressant exposure during pregnancy may have been confounded.

OBJECTIVE To evaluate the association between serotonergic antidepressant exposure during pregnancy and child autism spectrum disorder.

DESIGN_SETTING, AND PARTICIPANTS Retrospective cohort study. Health administrative data sets were used to study children born to mothers who were receiving public prescription drug, coverage during pregnancy in Ontario, Canada, from 2002-2010, reflecting 4.2% of births. Children were followed up until March 31, 2014.

EXPOSURES. Serotomergic antidepressant exposure was defined as 7 or more consecutive maternal prescriptions for a selective serotonin or serotonin-nonepinephrine reuptake inhibitor between conception and delivery.

MAIN OUTCOMES AND MEASURES. Child autom spectrum disorder identified after the apr of 2 years. Exposure group differences were addressed by inverse probability of treatment weighting based on derived high-dimensional propensity scores (computerized algorithm used to select a large number of potential confoundent) and by comparing exposed children with unexposed solaries.

ESSUES There were 15:906 singleton bitts at a mean gestational age of 8.7 weeks (\$0.4% were male, mean maternal age was 26.7 years, and mean duration of follow-up was 4.55 years). In the 2837 pregrancies (?9%) exposed to antidepressants, 2,0% (5% C), 16%-2.6%) of children were diagnosed with autism spectrum disorder. The incidence of autism spectrum disorder was 4.51 per 1000 person-years among children exposed to antidepressants vs. 2.0 ger 1000 person-years among children exposed to antidepressants vs. 2.0 ger 1000 person-years hazard ratio (HR), 2.16 (95% C), 1.64-2.86), adjusted HR, 1.59 (95% C), 1.72-217). After inverse probability of treatment weighting based on the high-dimensional propensity score, the association was not significant (HR, 1.01 (95% C), 0.997-2.50). The association was not significant (HR, 1.01 (95% C), 0.997-2.50). The association was not significant (HL, 160 (95% C), 0.09-31-20). The association was not significant (HL, 160 (95% C), 0.09-31-20).

CONCLUSIONS AND RELEVANCE. In children born to mothers receiving public drug coverage in Ornario, Canada, in utero sentornegic antidepressant exposure compared with no exposure was not associated with autism spectrum disorder in the child. Although a causial relationship cannot be valed out, the previously observed association may be explained by other factors.

#844.2011317(15) (544-852.doi:10.1003/jama.201134/5

- 1887-0-1287

Editorial page 1533

Related article page 1553

Supplemental content

Author AMIations. Women's

College Research Institute, Women's

Canada (Brown, Vigori), Department

of Psychiatry, Livinersity of Toronto.

Toronto, Ontario, Canada (Brown,

Lunsky Vigod). Institute for Cinical

Canada (Brown: Ray Wilton, Luminy,

Ontario, Canada (Ray); Department

of Medicine, University of Toronto,

Toronto, Ontario, Canada (Ray):

Health, Toronto, Ontario, Canada

Pharmacy, University of Toronto,

Toronto, Ontario, Canada (Somani)

Corresponding Author: Simone N.

Vand MS MC 79707 Women's

College Hospital, 76 Grenville St.

Toronto, ON M55 IB2, Canada

formerse vigodi@wchospital.coll.

Centre for Addiction and Mental

(Lumsky), Largier Dani Faculty of

Gomes, Vigoci): Department of

Obstatistics and Gynamosiogy.

St Michael's Hospital, Toronto,

Evaluative Sciences, Toronto, Detario,

College Hospital, Toronto, Ortano,

JAMA | Original Investigation

Beneurch.

Associations of Maternal Antidepressant Use During the First Trimester of Pregnancy With Preterm Birth, Small for Gestational Age, Autism Spectrum Disorder, and Attention-Deficit/Hyperactivity Disorder in Offspring

Ayesha C. Sujan, MA, Martin E. Rickert, PHD: A. Sara Oberg, MD. PHD: Patrick D. Quinn, PHD: Sonia Hernandez Diaz, MD. PHD: Catalina Almovist, MD, PHD: Paul Lichtenstein, PHD; Hervik Lanson, PHD; Brian M, D'Onofrio, PHD

IMPORTANCE Prenatal antidepressant exposure has been associated with adverse outcomes. Previous studies, however, may not have adequately accounted for confounding. Coltonial page 1513 Related article page 1544 Supplemental content

OBJECTIVE To evaluate alternative hypotheses for associations between first-trimester antidepressent exposure and birth and neurodevelopmental problems.

DEMGN, SETTING, AND PARTICIPANTS. This retrospective cohort study included Swedish offspring born-between 1996 and 2012 and bilowed up through 2013 or censored by death or emigration. Analyses controlling for pregnancy, maternal and paternal covariantes, as well as sibling comparisons, timing of exposure comparisons, and paternal comparisons, were used to examine the associations.

EXPOSURES. Maternal self-reported first-trimester antidepressant use and first-trimester antidepressant dispensations.

MAINOUTCOMES AND MEASURES. Preterm birth (<37 gestational weeks), small for gestational age (birth weight <2 SDs below the mean for gestational age), and first inpatient or outpatient clinical diagnosis of autism spectrum disorder and attention-deficit/hyperactivity disorder in offspring.

HESHARTS Among 1580 629 offspring (mean gestational age, 279 days: 48.6% female; 1.4% (n = 22 544) with maternal first-trimester self-reported antidepressant use) born to 943 776 mothers (mean age at childbirth, 30 years), 6.98% of exposed vs 4.78% of unexposed offspring were preterm, 2.54% of exposed vs 2.59% of unexposed were small for gestational age, 5 28% of exposed vs 2 34% of unexposed were diagnosed with autism spectrum. disorder by age 15 years, and 12.63% of exposed vs 5.46% of unexposed were diagnosed with attention-deficit/hyperactivity disorder by age 15 years. At the population level. first-trimester exposure was associated with all outcomes compared with unexposed offspring (preterm birth odds ratio [OR], 1.47 [95%-CI, 1.40-1.55]; small for gestational age OR. 115 [95% CI. 1.06-1.25]; autism spectrum disorder hazard ratio (HR]. 2.02 [95% CI. 180-2.26]; attention-deficit/hyperactivity disorder HR, 2.21 [95% CI, 2.04-2.39]). However, in models that compared siblings while adjusting for pregnancy, maternal, and paternal traits. first-trimester antidepressant exposure was associated with preterm birth (OR. 1.34 (95% C). 138-152[) but not with small for gestational age (OR, 101 [95% CI, 0.81-125]), autism spectrum disorder (HR, 0.83 [95% CI, 0.62-113]), or attention-deficit/hyperactivity disorder 04R, 0.99 (95% Cl. 0.79-1.252). Results from analyses assessing associations with maternal dispensations before pregnancy and with patental first-trimester dispensations were consistent with findings from the sibling comparisons.

CONCLUSIONS AND RELEVANCE Among offspring born in Sweden, after accounting for confounding factors, first-trimester exposure to antidepresants, compared with ne exposure, was associated with a small increased risk of preterm birth but no increased risk of small for gentational age, autom spectrum disorder, or attention-deficit/hyperactivity disorder.

JAMA 2017;17(5):1553-562. doi:10.1007(jama.2017.341)

Author Affiliations Department of Psychological and Biain Sciences, Indiane University Bioarmights Gaan, Richard, Gonn, D'Dwitholl Department of Medical Epideminings and Biotesticks, Randmink until Nat., Social Andre Standen Oberg, Allevyski, Leithember, Lanson, O'Dwithol, Department of Epidemiology, Nervied JH, Chan School Fiholis Hawith, Booton, Nanaschuseth (Xeng, Imminister) 2015, School of Medical Sciences, Owtho University, Drethn, Sweden Lanson)

Corresponding Authen Inten M. D'Orions, HD, Department of Psychological and Brain Sciences, Indiana University, 107 E 10th St. Biosenington, IN 474025 Omdoneh (Sindiana adu).

1555

1544

Cepyright 2017 American Wedical Association. All rights reserved.

LETTERS

A genome-wide linkage and association scan reveals novel loci for autism

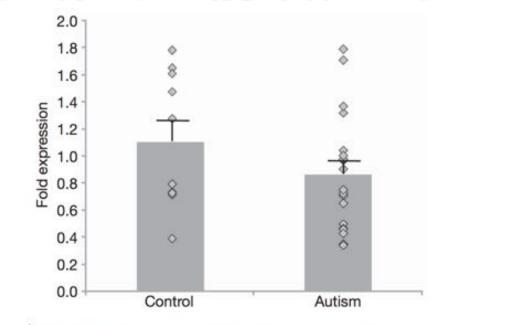
Lauren A. Weiss^{1,2}*†, Dan E. Arking³* & The Gene Discovery Project of Johns Hopkins & the Autism Consortium[‡]

Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success1. Genome-wide association studies using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits. Consequently, we initiated a linkage and association mapping study using half a million genome-wide single nucleotide polymorphisms (SNPs) in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed an SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism ($P = 2 \times 10^{-7}$). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening whereas the discovery of a single novel association demonstrates the action of common variants.

For a high-resolution genetic study of autism, we selected families

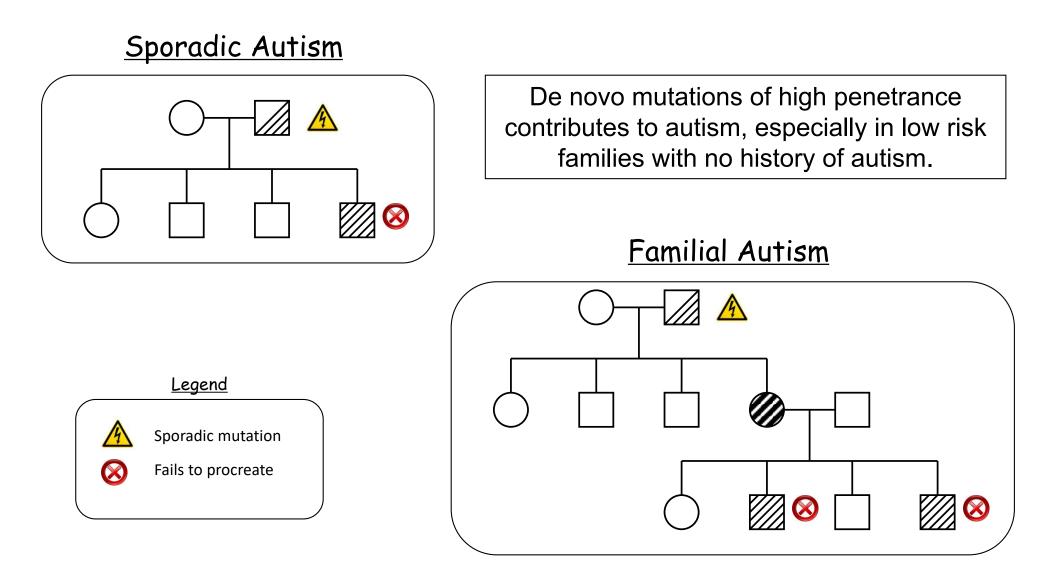
Before merging, we carefully filtered each data set separately to ensure the highest possible genotype quality for analysis, because technical genotyping artefacts can create false positive findings. We therefore examined the distribution of χ^2 values for the highest quality data, and used a series of quality control (QC) filters designed to identify a robust set of SNPs, including data completeness for each SNP, Mendelian errors per SNP and per family, and a careful evaluation of inflation of association statistics as a function of allele frequency and missing data (see Methods). As 324 individuals were genotyped at both centres, we performed a concordance check to validate our approach. After excluding one sample mix-up, we obtained an overall genotype concordance between the two centres of 99.7% for samples typed on 500K at Johns Hopkins University and 5.0 at the Broad Institute and 99.9% for samples run on 5.0 arrays at both sites. The combined data set, consisting of 1,031 nuclear families (856 with two parents) and a total of 1,553 affected offspring, was used for genetic analyses (Supplementary Table 1). These data were publicly released in October 2007 and are directly available from AGRE and NIMH.

For linkage analyses, the common AGRE/NIMH data set was further merged with Illumina 550K genotype data generated at the Children's Hospital of Philadelphia (CHOP) and available from AGRE. adding


LETTERS

A genome-wide linkage and association scan reveals novel loci for autism

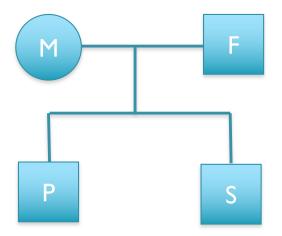
Lauren A. Weiss^{1,2}*†, Dan E. Arking³* & The Gene Discovery Project of Johns Hopkins & the Autism Consortium1


Although autism is a highly heritable neurodevelopme order, attempts to identify specific susceptibility genes h far met with limited success1. Genome-wide association using half a million or more markers, particularly those large sample sizes achieved through meta-analysis, hav great success in mapping genes for other complex gene Consequently, we initiated a linkage and association mapp using half a million genome-wide single nucleotide polyme (SNPs) in a common set of 1,031 multiplex autism famili affected offspring). We identified regions of suggestive an cant linkage on chromosomes 6q27 and 20p13, respective analysis did not yield genome-wide significant asso however, genotyping of top hits in additional families re-SNP on chromosome 5p15 (between SEMA5A and TAS) was significantly associated with autism ($P = 2 \times 10^{-7}$). demonstrated that expression of SEMA5A is reduced in bra autistic patients, further implicating SEMA5A as an autisr tibility gene. The linkage regions reported here provide to Figure 2 | SEMA5A expression in autism brains. SEMA5A gene expression association demonstrates the action of common variants.

For a high-resolution genetic study of autism, we selected

rare variation screening whereas the discovery of a sin is shown relative to MAP2. Diamonds indicate individual expression levels for each sample; error bars indicate standard error (s.e.).

Unified Model of Autism

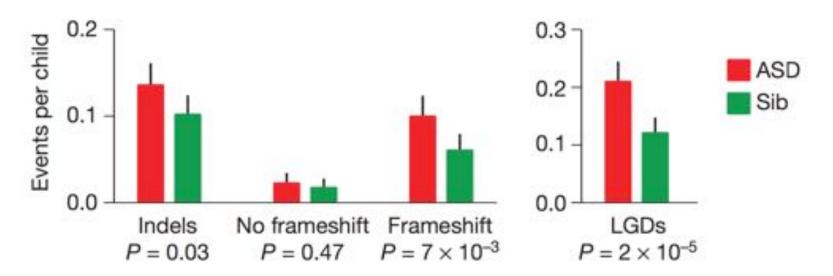


A unified genetic theory for sporadic and inherited autism Zhao et al. (2007) PNAS. 104(31)12831-12836.

De novo mutation discovery and validation

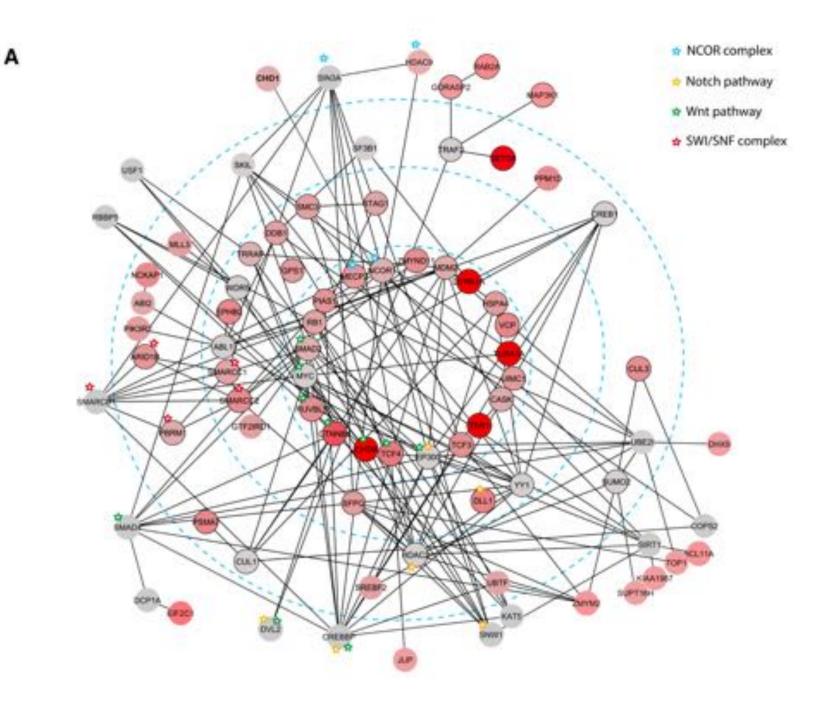
Concept: Identify mutations not present in parents.

Challenge: Sequencing errors in the child or low coverage in parents lead to false positive de novos

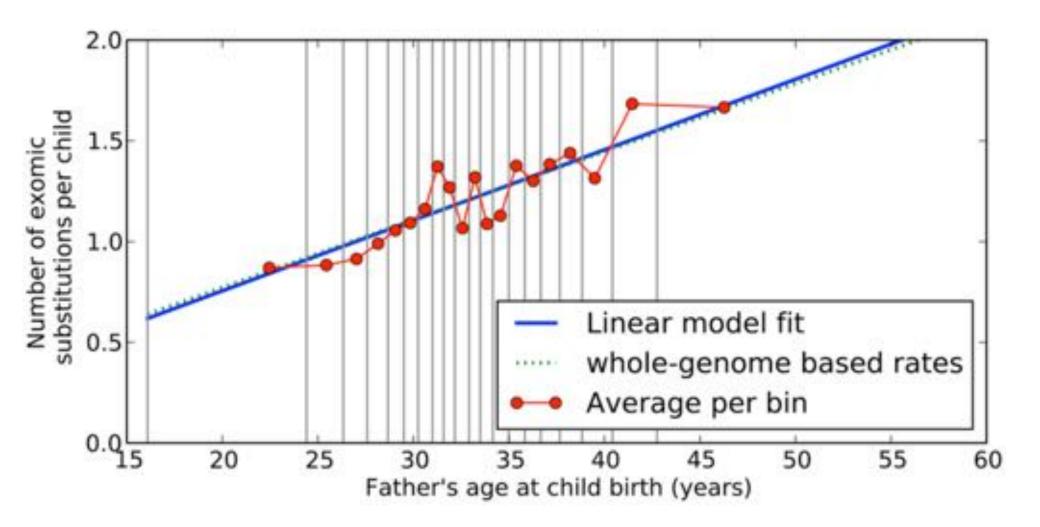


Reference: ... TCAAATCCTTTTAATAAAGAAGAGCTGACA...

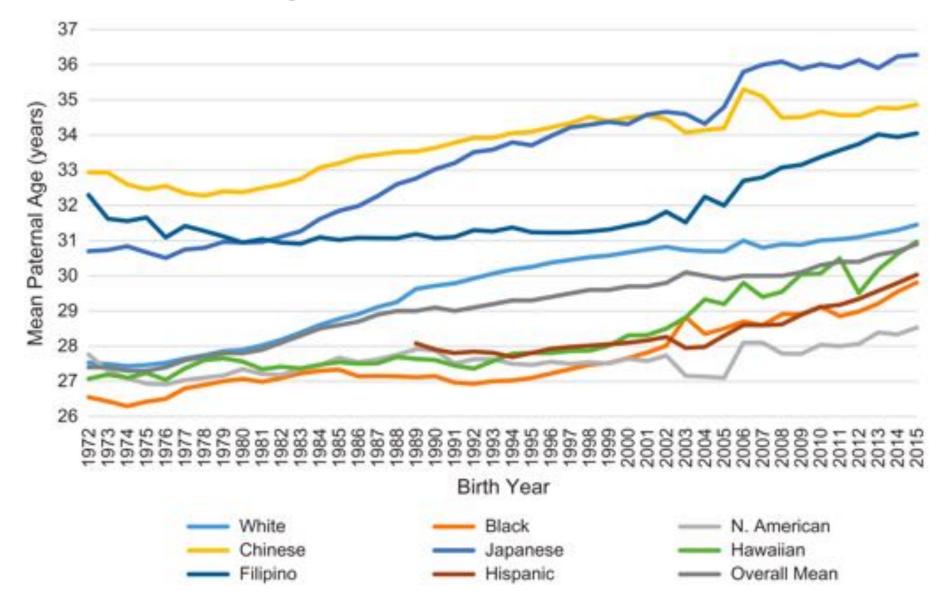
Father:	TCAAATCCTTTTAATAAAGAAGAGCTGACA
Mother:	••••TCAAATCCTTTTAATAAAGAAGAGCTGACA•••
Sibling:	••••TCAAATCCTTTTAATAAAGAAGAGCTGACA•••
Proband(1):	••••TCAAATCCTTTTAATAAAGAAGAGCTGACA•••
Proband(2):	••••TCAAATCCTTTTAAT***AAGAGCTGACA•••


4bp heterozygous deletion at chr15:93524061 CHD2

De novo Genetics of Autism


- In 2,500 family quads we see significant enrichment in de novo likely gene disruptions (LGDs) in the autistic children
 - Overall rate of de novo mutations basically 1:1
 - 2:1 enrichment in frameshift indels, nonsense mutations
 - Contributed dozens of new autism candidate genes, highly enriched for neuron development or chromatin modifiers

The contribution of de novo coding mutations to autism spectrum disorder lossifov et al (2014) Nature. doi:10.1038/nature13908


The discovery of integrated gene networks for autismand related disorders Hormozdiari et al (2015) Genome Research

De novo Mutations in Men

The contribution of de novo coding mutations to autism spectrum disorder lossifov et al (2014) Nature. doi:10.1038/nature13908

Age of Fatherhood

The age of fathers in the USA is rising: an analysis of 168 867 480 births from 1972 to 2015 Khandwala et al (2017) Human Reproduction. https://doi.org/10.1093/humrep/dex267