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Project Proposal!
Due March 15

Project Proposal

Assignment Date: March 7, 2016
Due Date: Thursday, March 15, 2017 € 11:69pm

Review the Project Ideas page
Work solo or form a team for your class project (no more than 3 people to a team).
The proposal should have the following components:

* Name of your team

List of team members and emal addresses

« Short title for your proposal

» 1 paragraph description of what you hope 1o do and how you will do it

o References 10 relevant papers

¢ References/URLs to datasets that you will be studying (Note you can also use simulated data)

Submit the proposal as 3 single page POF on blackboard, After submitting your proposal, we will schedule a time 0 discuss your proposal,
espacially 10 ensure you have access to the data that you need. The sooner that you submit your propossl, the sooner we can schedule
the meeting. No late days can be used for the project.

Later, you will present your project in class during the last week of class. You will also submit a written report (5-7 pages) of your project,
formatting as a Bioinformatics article (Intro, Methods, Results, Discussion, References), Word and LaTeX templates are avalable at
htips:/facademic.oup.comybicinformatics/pages/submission_online

Please use Plazza to coordinate proposal plans!



HW6:
Due Marc

Assignment 6: RNA-seq and differential expression

Assigresent Date: Thursday, Macch 15 2008

Due Date: Thursday, March 20, 2078 @ 11:58pm

Assignment Overview

In this sssigament, you will analy 2o gene exprossion Sats snd learm how 10 make soveral kinds of plots in the emvironment of your choics. (We suggest Pyshon or R.)
Make sure to show your work/code In your writeup! As before, any Questions about the assignment should be posted to Pazza
Question 1, Time Series (Y0 pts)

This flle conmain pre-narmaiized expression vilues 1o 100 genes ower 10 tise points. Moat gones hive & stable background expression level, But some special Qenes
ow Incressad sxpression over the Bmeccurse and some show decreasad axpression

A Ouster the genes uaing an algodithm of your cheice, Which genes show ncreasing sapression and wiich genes show decroesing expression, and how & you
doterming this? What |s the background expression ieve! (numenical value) and how dic you determing this? [Mint: K-means and herarchical chustening are common
clustering algorithims you could try.)

B. Calcuiate the firs! 1w pANCIoN companents of 158 eapression matriy. Show Bhe piot and coltr the points Based on Ihelr Cluster from part (4). Does the PCY axis, PC2
axis, neither, or Both cormespond 1o The clustering?

€. Crodte a Postmap of the sapression matris, Order the geres Dy cluater, Sut keep the time points in numedcal order

Guestion 2. Sampling Simulation [10 pts]

A typical human col Ras - 250,000 transcripts, and 8 Hypic bulc ANA-seq mxperiment may Ivolve milions of cells. Conseguently in an RNASEG experiment you may
start with iriSions of RNA molecules, athough your sequencer wil ondy give a few millon 10 Dillons of reads. Therefore your RNAsSeq experiment wil be a smal
sampiing of the ful composition. We hope the seguences will be a representative sample of the 1018l popUation, Dut If your sampie is very uniuCy or Diased & may not
represent the true Satrbution. We will explone this concept by sarmrpling & seeall scbaet of tranacripns (1000 to S000) cut of & much eger sat [TM) 30 that you can
oviuste i b,

In s Sle with 1,000,000 ines we provicle an abistracton of ANA-seq data where normalization has been performed and the numdet of Times & gene name cocun
corresponds 10 the number of transcripts sequenced

A. Rancomiy sample 000 rows. Do this simuiation 10 times and record the relative abundance of each of the 15 genes. Piot the mean va. variance.
b. Do the same samping experiment Dut sample 5000 rows each Tme. Again piot the mean vs. vanance.
C. I8 the variance grester in (a) or (b7, and explain wity, What is the relationaio betweoen abundance and varience?

d. Suppose you had received data where the number of 1imes 3 gane Name SoCUrs corresponds 10 the number of reads mapped 10 that gene. In a few sentences
epiain how would you nommalize the data, and what addional Information would you need? [Hink: why Is read count not enough™]



ENCODE Data Sets
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1,640 data sets total over 147 different cell types




Single Cell Analysis

|. Why single cells?
2. scDNA
3. scRNA and other assays




Population Heterogeneity

Red cells express twice the abundance of “brain” genes compared to green cells

Experiment 1: 50/50
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Compared to a control
sample of pure green
cells, this sample will
show:

50% 2x + 50% 1x
= 1.5x over expression
of brain genes

Experiment 2: 1/10
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Compared to a control
sample of pure green
cells, this sample will
show:

10% 2x + 90% 1x
= 1.1x over expression
of brain genes

Experiment 3: 1/1000

Compared to a control
sample of pure green
cells, this sample will
show:

0.1% 2x + 99.1% 1x
= 1.001x over expression
of brain genes




The limitations of averages

T ongA | brugs.

Overall Response 78% (273/350)  83% (289/350)



The limitations of averages

T ongA | brugs.

Overall Response 78% (273/350)  83% (289/350)
Male Response 93% (81/87) 87% (234/270)
Female Response  73% (192/263) 69% (55/80)

What??? How can the better performing drug depend on if you examine the overall
response or separately examine by gender

Example of Simpson’s paradox:
Trend of the overall average may reverse the trends of each constituent group

In this example, the "lurking" variable (or confounding variable) is the severity of the
case (represented by the doctors' treatment decision trend of favoring B for less
severe cases), which was not previously known to be important until its effects were
included. (Based on real analysis of kidney stone treatments)



The paradox of averages
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What??? How can the better performing drug depend on if you examine the overall
response or separately examine by gender

Example of Simpson’s paradox:
Trend of the overall average may reverse the trends of each constituent group

In this example, the "lurking" variable (or confounding variable) is the severity of the
case (represented by the doctors' treatment decision trend of favoring B for less
severe cases), which was not previously known to be important until its effects were
included. (Based on real analysis of kidney stone treatments)

(Trapnell, 2015, Genome Research)



Sources of (Genomic) Heterogeneity

Neuronal mosaicism

Immune Cells

Tumor evolution T
Recombination/crossover

in germ cells



Tumor Evolution
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The Clonal Evolution of Tumor Cell Populations
Peter C. Nowell (1976) Science. 194(4260):23-28 DOI: 10.1126/science.959840
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Brain Mapping & Resection

An example of brain somatic mosaicism that leads to a focal overgrowth condition.

(A) Axial brain MRI of focal overgrowth from a 2-month-old child with intractable epilepsy and intellectual
disability. (B) Brain mapping using high-resolution MRI is followed by surgical resection of diseased brain
tissue. (C) Histological analysis with hematoxylin/eosin showing characteristic balloon cells consisting of
large nuclei, distinct nucleoli, and glassy eosinophilic cytoplasm. (D) After surgery, the patient showed clinical
improvement.

Intersection of diverse neuronal genomes and neuropsychiatric disease:The Brain Somatic
Mosaicism Network. McConnell et al (2017) Science. doi: 10.1126/science.aall 641



Immunology

e Massive diversity rivaled only by

germ cells
B-Cell
e Somatic recombination
e B cells — antibody generation
antigen- .
presenting ‘ T-Cell

cell (APC) T cells — antigen response

Single cell research. lllumina.



In-vitro Fertilization

Percentages of ART Cycles Using Fresh Nondonor Eggs or Embryos That
Resulted in Pregnancies, Live Births, and Single-Infant Live Births,

by Age of Woman, 2014
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Sources of (Cellular) Heterogeneity
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https://www.humancellatlas.org/



Clustering Refresher

as Euclidean Distance
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Figure 2 | A synthetic gene-expression data sel, This data sel provides an opportunity 1o
evaluate how various clustering akgorithms reveal diferent features of tha data. a | Nine distinct d(p,q) =d(q,p) = \/(ql —p1)?+ (QQ —p2)?+ -+ (g —pa)? = Z(q:' - pi)?.
gene-expression patterns were created with log ratio) expression measures defined for ten
experiments. b | For each expression pattern, 50 addiional genes were generated,
representing variations on the basic patterns.

i=1

Computational genetics: Computational analysis of microarray data
Quackenbush (2001) Nature Reviews Genetics. doi:10.1038/35076576



Hierarchical Clustering

average

complete

single




Principle Components Analysis (PCA)

PC1: “New X’- The dimension with the most variability
PC2: “New Y”- The dimension with the second most variability



Principle Components Analysis (PCA)

Figure 4 | Principal component analysis. The same demonstration data set was analysed
using a | hierarchical (average-linkage) clustering and b | principal component analysis using
Euclidean distance, to show how each treats the data, with genes colour coded on the basis
of hierarchical clustering results for comparison.



PCA and t-SNE
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Principal Components Analysis t-Distributed Stochastic Neighbor Embedding
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t-distributed Stochastic Neighborhood Embedding

Non-linear dimensionality reduction technique: distances are only locally meaningful
Rather than Euclidean distances, for each point fits a Gaussian kernel to fit the
nearest N neighbors (perplexity) that define the probabilities that two points should
be close together

Using an iterative spring embedding system to place high probability points nearby

Visualizing Data Using t-SNE
https://www.youtube.com/watch?v=RJVL80Gg3IA



Single Cell Analysis

|. Why single cells?
2. scDNA
3. scRNA and other assays




LETTER

Tumour evolution inferred by single-cell sequencing

Nicholas Navin'~, Jude Kendall', Jennifer Troge', Peter Andrews’, Linda Rodgers', Jeanne McIndoo', Kerry Cook’,
Asya Stepansky’, Dan Levy', Diane Esposito’, Lakshmi Muthuswamy”, Alex Krasnitz', W. Richard McCombie’, James Hicks'

& Michael Wigler'

@0i:10.1038/ nature09807
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ONE GENOME FROM MANY

Sequencing the penomes of single cells 5 smdar 10 saQuencong
Ik o MuBple Colls — DUt errdes ane more eely

P Standard gonome sequencing

A sarvple contanieg thousands o
malons of cells is solsied

Single-cell vs. bulk sequencing

DNA 5 sxlracied rom ol 1N Macier

S

DNA =5 Droken nio Magments
and e socuenced

)

The seguences Ate asdambled 10 grve 4
COMIMOon, "comeanss wWwquence

Brian Owens, Nature News 2012



Single-cell vs. bulk sequencing

ONE GENOME FROM MANY

Sequencing the penomes of single colls I5 Smdar 10 SOQUeNOng
hone o muBipie el — DUL errors are more eely

e g

A sarrple contaning Thousand o DNA is axtracted from all the nuche DNA & hroken nlo Yagements The sequences are assembled 10 give &
milons of cells is solied and T weguenced COITUTION, "COMAanI Mquence

» Single - cell sequencing

A single cof 15 ihcult 95 isolate, Dut The DNA & extacted and amplided, Ayoitet DNA a sequenced Ereves Otroduoed ) earber seps Mmake
it can be done mechanically or with UGN whach Smors Can creep in equerca 3ssembly oL the tnal
AN uomated 0ol sorler SOGuenol Can Nawe Baps

Brian Owens, Nature News 2012



Whole Genome Amplification Techniques

DOP-PCR: Degenerate Oligonucleotide Primed PCR

Telenius et al. (1992) Genomics
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MDA: Multiple Displacement Amplification

Dean et al. (2002) PNAS
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MALBAC: Multiple Annealing and Looping Based Amplification Cycles

Zong et al. (2012) Science

Paul Blainey, FEMS Microbiol Rev. 2013



Fluidigm C1

Benchtop automated single-cell isolation and preparation system(lysis and
pre-amplification) for genomic analysis. The C1 System provides an easy
and highly reproducible workflow to process 96 single cells for DNA or RNA

analysis.



True genotype

rrectly identified

False-negative calls

Strategies for
overcoming errors

Nature Reviews | Genetics

scCNVs
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Potential for biases at every step
— WGA: Non-uniform amplification

— Library Preparation: Low complexity, read
duplications, barcoding

— Sequencing: GC artifacts, short reads

— Computation: mappability, GC correction,
segmentation, tree building

Coverage is very sparse and noisy
-> requires special processing

Single-cell genome sequencing: current state of the science
Gawad et al (2016) Nature Reviews Genetics. doi:10.1038/nrg.2015.16



|) Binning

Single Cell CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin

= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



|) Binning

Single Cell CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin

= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



|) Binning
|5i4‘5‘10‘11‘5‘2i5|

Single Cell CNV analysis
= Divide the genome into “bins” with ~50 — 100 reads / bin

= Map the reads and count reads per bin
Use uniquely mappable bases to establish bins



Read Counts

2) Normalization

Read Counts
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Also correct for mappability, GC content, amplification biases



GC Bias

Overlay of All Datasets
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Garvin and Aboukhalil et al., Nature Methods, 2015



Normalized Read Counts

3) Segmentation




stimating Copy Number

Read Counts Scaled by SoS Muliper (1.7)
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5) Cells to Populations
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Gingko

http://gb.cshl.edu/ginkgo

Upload your bed files

Interactive Single Cell CNV analysis & clustering

— FEasy-to-use, web interface, parameterized for binning,

segmentation, clustering, etc |

— Per cell through project-wide analysis in any species |

Compare MDA, DOP-PCR, and MALBAC

— DOP-PCR shows superior resolution and consistency

Available for collaboration

— Analyzing CNVs with respect to different clinical outcomes
— Extending clustering methods, prototyping scRNA il

300 T R

Interactive analysis and assessment of single-cell copy-number variations.
Garvin T, Aboukhalil R, Kendall |, Baslan T, Atwal GS, Hicks J,Wigler M, Schatz MC (2015)
Nature Methods doi:10.1038/nmeth.3578



10 / GENOMICS®

scCNV-Seq

Single Cell CNV-Seq

* Reveal genomic heterogeneity

Understand clonal evolution

* Determine pathogenesis and cancer
progression

* Scalable from 100s-1000s of cells

* Single-cell CNV calling

* (Call CNVs down to 100kb resolution
* CNV-Seq specific software pipeline



Single Cell Analysis

|. Why single cells?
2. scDNA
3. scRNA and other assays




Introducing Drop-Seq
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Many of the same technical challenges apply:

 Allelic dropout, non-uniform amplification, few reads per cell (~50k / cell).

« Remarkably, cell type identity can often be determined with this many reads
» Use statistics to smooth out uneven coverage across cells.

Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
Macosko et al (2015) Cell. https://doi.org/10.1016/j.cell.2015.05.002
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Drop-seq: Droplet barcoding of single cells
https://www.youtube.com/watch?v=vL7ptq2Dcf0



— |- e v, Key Results
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Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
Macosko et al (2015) Cell. https://doi.org/10.1016/j.cell.2015.05.002



0 Key Results
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Comprehensive single-cell transcriptional profiling of a multicellular organism
Cao et al (2017) Science. 357:661-557



concentration

MRNA Molecules
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Proteins
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anterior posterior
position in early embryo

https://en.wikipedia.org/wiki/Drosophila_embryogenesis
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Spatial reconstruction of single-cell gene expression data (‘“‘Seurat”)
Satija et al (2015) Nature Biotechnology. doi:10.1038/nbt.3192
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The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells (“Monocle”)
Trapnell et al (2014) Nature Biotechnology. doi:10.1038/nbt.2859
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Up to 1M cells in a single analysis

Massively parallel digital transcriptional profiling of single cells
Zheng et al (2017) Nature Communication. doi:10.1038/ncomms 4049
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SCATAC-Seq

Single Cell ATAC-Seq

* Interrogate epigenomics at single-cell
resolution

* Define cell types and states
* Investigate regulatory mechanisms

* Scalable from 1000s of cells

* High cell capture efficiency

* High transpososome capture sensitivity
* ATAC-Seq specific software pipeline
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Single Cell Feature Barcoding

Reveal protein abundance and gene
expression from the same cell

Understand diverse CRISPR perturbations
at single-cell level

Feature barcoding reagents and protocols

Custom antibody conjugation
Preferred panners for pre-conpugated antibodies

Scalable from 100s-1000s of cells
Interactive visualization in Loupe cell

browser
CNV-Seq specific software pipeline



scRNA Analysis Tools: 204 and counting....
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Single Cell Analysis Summary

Single cell analysis is a powerful tool to study heterogeneous tissues
« Overcomes fundamental problems that can arise when averaging

« scCNV analysis used for understanding tumor progression, other mutational
processes

« scRNA analysis used to identify novel cell types, understand the progression
from one cell type to another across development or disease

« Many other sc-assays in development, expect 100s to 1000s to 1Ms of cells in
essentially any assay

Major challenges

* Very sparse amplification and few reads per cell
« Find large CNVs, identify major cell types; hard to find small variants or
perform differential expression

« Allelic-dropout and unbalanced amplification hides or distorts information
» Use statistical approaches to smooth results based on prior information or
other cells from the same cell type

 Need new ways to process and analyze millions of cells at a time



