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*-seq in 4 short vignettes
RNA-seq Methyl-seq

ChIP-seq Hi-C



Human Evolution

As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five 
other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly 
evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific 
genes that have been lost in each of the other five species under consideration.

Genome analysis of the platypus reveals unique signatures of evolution
(2008) Nature. 453, 175-183 doi:10.1038/nature06936

~5 Mya

~75 Mya

~100 Mya

~160 and 210 Mya



Methyl-seq

Finding the fifth base: Genome-wide sequencing of cytosine methylation
Lister and Ecker (2009) Genome Research. 19: 959-966



Bisulfite Conversion

Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications
Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572.

Treating DNA with sodium bisulfite 
will convert unmethylated C to T

• 5-MethyC will be protected and not change, 
so can look for differences when mapping

• Requires great care when analyzing reads, 
since the complementary strand will also be 
converted (G to A)

• Typically analyzed by mapping to a “reduced 
alphabet” where we assume all Cs are 
converted to Ts once on the forward strand 
and once on the reverse



ChIP-seq

Genome-wide mapping of in vivo protein-DNA interactions.
Johnson et al (2007) Science. 316(5830):1497-502



Transcription

https://www.youtube.com/watch?v=WsofH466lqk



Sry: the master switch in mammalian sex determination
Kashimada and Koopman (2010) Development 137: 3921-3930; doi: 10.1242/dev.048983



Sry: the master switch in mammalian sex determination
Kashimada and Koopman (2010) Development 137: 3921-3930; doi: 10.1242/dev.048983



Transcription Factors Database

JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles
Anthony Mathelier (2014) Nucleic Acids Res. 42 (D1): D142-D147. DOI: https://doi.org/10.1093/nar/gkt997



Promoters

Metazoan promoters: emerging characteristics and insights into transcriptional regulation
Lenhard et al (2014) Nature Reviews Genetics 15, 272–286



Enhancers

Transcriptional enhancers: from properties to genome-wide predictions
Shlyueva et al (2014) Nature Reviews Genetics 15, 272–286

Enhancers are genomic regions that 
contain binding sites for transcription 
factors (TFs) and that can upregulate
(enhance) the transcription of a target 
gene. 

• Enhancers can be located at any distance 
from their target genes (up to ~1Mbp)

• In a given tissue, active enhancers 
(Enhancer A in part b or Enhancer B in 
part c) are bound by activating TFs and 
are brought into proximity of their 
respective target promoters by looping

• Active and inactive gene regulatory 
elements are marked by various 
biochemical features

• Complex patterns of gene expression 
result from the additive action of different 
enhancers with cell-type- or tissue-
specific activities



Enhancer States



Insulators

Insulators: exploiting transcriptional and epigenetic mechanisms
Gaszner & Felsenfeld (2006) Nature Reviews Genetics 7, 703-713. doi:10.1038/nrg1925

Insulators are DNA sequence elements that prevent “inappropriate 
interactions” between adjacent chromatin domains. 
• One type of insulator establishes domains that separate enhancers and 

promoters to block their interaction, 
• Second type creates a barrier against the spread of heterochromatin. 



ChIP-seq: TF Binding

Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
Valouev et al (2008) Nature Methods. 5, 829 - 834

Goals:
• Where are transcription 

factors and other 
proteins binding to the 
DNA?

• How strongly are they 
binding?

• Do the protein binding 
patterns change over 
developmental stages or 
when the cells are 
stressed?



Chromatin compaction model

Nucleosome is a basic unit of DNA packaging in eukaryotes
• Consists of a segment of 146bp DNA wound in sequence around eight histone 

protein cores (thread wrapped around a spool) followed by a ~38bp linker

• Under active transcription, nucleosomes appear as “beads-on-a-string”, but are 

more densely packed for less active genes

Nucleosomes form the fundamental repeating units of eukaryotic chromatin
• Used to pack the large eukaryotic genomes into the nucleus while still ensuring 

appropriate access to it (in mammalian cells approximately 2 m of linear DNA have 

to be packed into a nucleus of roughly 10 µm diameter). 



ChIP-seq: Histone Modifications



ChIP-seq: Histone Modifications

The common nomenclature of histone modifications is:
• The name of the histone (e.g., H3)
• The single-letter amino acid abbreviation (e.g., K for Lysine) and the amino acid 

position in the protein
• The type of modification (Me: methyl, P: phosphate, Ac: acetyl, Ub: ubiquitin)
• The number of modifications (only Me is known to occur in more than one copy 

per residue. 1, 2 or 3 is mono-, di- or tri-methylation)

So H3K4me1 denotes the monomethylation of the 4th residue (a lysine) from 
the start (i.e., the N-terminal) of the H3 protein.



ChIP-seq: Histone Modifications



General Flow of ChIP-seq Analysis

Peak Calling

Analyze Enriched Regions

Visualization Peak-peak 
comparisons

Annotation /
Interpretation



PeakSeq

PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls
Rozowsky et al (2009) Nature Biotechnology 27, 66 - 75



Related Assays

ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions
Furey (2012) Nature Reviews Genetics. 13, 840-852



*-seq in 4 short vignettes
RNA-seq Methyl-seq

ChIP-seq Hi-C



HI-C: Mapping the folding of DNA

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome
Liberman-Aiden et al. (2009) Science. 326 (5950): 289-293



HI-C: Mapping the folding of DNA

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome
Liberman-Aiden et al. (2009) Science. 326 (5950): 289-293



Gene Regulation in 3-dimensions

The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome
Engreitz et al. (2013) Science. 341 (6147)

Fig 6. A model for how Xist exploits and alters three-dimensional 
genome architecture to spread across the X chromosome.



Genome compartments & TADs

Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data
Dekker et al. (2013) Nature Reviews Genetics 14, 390–403

Mammalian genomes have a pattern of 
interactions that can be approximated by 
two compartments called A and B
• alternate along chromosomes and have a 

characteristic size of ~5 Mb each.
• A compartments (orange) preferentially 

interact with other A compartments; B 
compartments (blue) associate with other 
B compartments. 

• A compartments are largely euchromatic, 
transcriptionally active regions.

Topologically associating domains (TADs)
• TADs are smaller (~400–500 kb)
• Can be active or inactive, and adjacent 

TADs are not necessarily of opposite 
chromatin status. 

• TADs are hard-wired features of 
chromosomes, and groups of adjacent 
TADs can organize in A and B 
compartments



“Lamina-Associated Domains are the B compartment”

Chromosome Conformation Paints Reveal the Role of Lamina Association in Genome Organization and Regulation 
Luperchio et al. (2017) bioRxiv. doi: https://doi.org/10.1101/122226



Scaffolding with Hi-C

Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome
Bickhart et al (2017) Nature Genetics (2017) doi:10.1038/ng.3802



Putting it all together!
RNA-seq Methyl-seq

ChIP-seq Hi-C



chr6:30,614,231-31,337,674
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Histone
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Histone
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We need a way to summarize the combinatorial patterns of
multiple histone marks into meaningful biological units 7

We can call peaks, but…



ChromHMM

ChromHMM is software for learning and characterizing chromatin states. 
• ChromHMM can integrate multiple chromatin datasets such as ChIP-seq data of 

various histone modifications to discover de novo the major re-occuring
combinatorial and spatial patterns of marks. 

• ChromHMM is based on a multivariate Hidden Markov Model that explicitly models 
the presence or absence of each chromatin mark. 

• The resulting model can then be used to systematically annotate a genome in one 
or more cell types.

ChromHMM: automating chromatin-state discovery and characterization
Ernst &  Kellis (2012) Nature Methods 9, 215–216. doi:10.1038/nmeth.1906



Chromatin states are defined based on different combinations of
histone modifications and correspond to different functional regions

The goal is to segment every base of the the genome into biologically 
meaningful units: reveal & annotate functional elements

ChromHMM and Chromatin States



ChromHMM : Multivariate Hidden Markov Model  

Binarized
chromatin  
marks. H3K4me3 H3K36me3H3K4me1

H3K27ac H3K4me1

200 base pair interval

Emission distribution is a  
product of independent  
Bernoulli random  
variables

Binarization leads to explicit modeling of mark combinations and interpretable parameters

Ernst and Kellis, Nat Biotech 2010 ; Ernst and Kellis, Nature Methods 2012

H3K4me3 H3K4me1 H3K36me3 H3K36me3 H3K36me3



ChromHMM : Multivariate Hidden Markov Model  
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ChromHMM : Multivariate Hidden Markov Model  

Binarized
chromatin  
marks. 
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ChromHMM : Multivariate Hidden Markov Model  
Enhancer Gene Starts         Gene Transcribed Region Heterochromatin
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The Workflow

1. Get ChIP-seq raw reads for different histone
modifications

2. Align the reads to a reference genome
3. Convert aligned reads in bed format
4. Create Binned and Binarized Tracks
5. Train the model
6. Infer the states
7. Interpretation

Thanks Sri!



Create Binned and Binarized Tracks

• ChromHMM quantify the presence or
absence of each mark in bins of fixed size

H3K27ac
H3K56ac
H4K5ac
H4K91ac
H3K4me1
H3K4me2
H3K4me3

Histone H3K27me3
methylation H3K9me3

H3K36me3
H4K20me1

1 1 1 1
0 1 0 1
1 0 0 0
1 1 1 1
1 1 0 1

Genomic sequence

Histone
acetylation



Train the model and segment the
genome

Model
Binarized

tracks LearnModel + Segmentation

java -mx1600M -jar ChromHMM.jar LearnModel
SAMPLEDATA_HG18 OUTPUTSAMPLE 10 hg18



Output of ChromHMM
• ChromHMM generates an HTML report called
webpage_N.html (N is the number of states
used) with many useful information :

1. Model learned: transition and emission parameters

2. Enriched functional categories

3. Bed files to visualize the segmentation



Transition and Emission Parameters



Enriched functional category

The states predicted by the HMM are statistical entities (#1 – #15)
The states we want are biological entities (Active/Weak/Poised promoter)

Investigate the properties of the statistical entities to label them with biological functions
=> Supervised learning problem J



Chromatin states dynamics across nine ENCODE cell types

• Single annotation track for each cell type
• Summarize cell-type activity at a glance
• Can study 9-cell activity pattern across
Ernst et al, Nature 2011


