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Assignment 5: Due March 8

Assignment 5: Genome Arithmetic

Assignment Date: Thursday, March 1, 2018
Due Date: Thursday, March 8, 2018 @ 11:58pm

Assignment Overview

In this assignment, you will call structural variants and analyze the properties of variants in the human genome. Make sure to
show your work in your writeup! As before, any questions about the assignment should be posted to Plazza.

Question 1. Gene Annotation Preliminaries [10 pts)

Download the annotation of bulld 38 of the human genome from here:
ftp://Mp.ensembl.org/pubfrelease-87/gt! fhomo_sapiens/Homo_sapiens GRCh38.87.g1.g2

» Question 1a. How many many GTF data lines are in this file? [Hint: The first few lines in the file beginning with “#" are
so-called “header” lines describing thing like the creation date, the genome version (more on that later in the course),
e1c. Header lines should not be counted as data lines.]

« Question 1b. How many annotated protein coding genes are on each autosome of the human genome? [Hint: Protein
coding genes will have “gene” in the 3rd column, and contain the following text: gene_biotype "protein_coding™)

« Question 1¢. What is the maximum, minimum, mean, and standard deviation of the span of protein coding genes? [Mint:
use the genes identified in 1b)

» Question 1d. What is the maximum, minimum, mean, and standard deviation in the number of exons for protein coding
genes? [Hint: you should separately consider each isoform for each protein coding gene)




Project Proposal!
Due March 15

Project Proposal

Assignment Date: March 7, 2016
Due Date: Thursday, March 15, 2017 € 11:69pm

Review the Project Ideas page
Work solo or form a team for your class project (no more than 3 people to a team).
The proposal should have the following components:

* Name of your team

List of team members and emal addresses

« Short title for your proposal

» 1 paragraph description of what you hope 1o do and how you will do it

o References 10 relevant papers

¢ References/URLs to datasets that you will be studying (Note you can also use simulated data)

Submit the proposal as 3 single page POF on blackboard, After submitting your proposal, we will schedule a time 0 discuss your proposal,
espacially 10 ensure you have access to the data that you need. The sooner that you submit your propossl, the sooner we can schedule
the meeting. No late days can be used for the project.

Later, you will present your project in class during the last week of class. You will also submit a written report (5-7 pages) of your project,
formatting as a Bioinformatics article (Intro, Methods, Results, Discussion, References), Word and LaTeX templates are avalable at
htips:/facademic.oup.comybicinformatics/pages/submission_online

Please use Plazza to coordinate proposal plans!
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Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
Serlie et al (2001) PNAS. 98(19):10869-74.
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RNA-seq Challenges
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RNA-Seq Approaches
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Fig. 2 Read mapping and transcript identification strategies. Three basic strategies for regular RNA-seq analysis. 8 An annotated genome is
available and reads are mapped 10 the genome with a gapped mapper. Next (noves) ransript discovery and guantification can proceed with o
without an annotation file. Novel transcripes are then functionally annotated. b Iif no novel transcript discovery is needed, reads can be mapped
10 the refesence transriptome wsing an ungapped aligner. Transcript identification and quantification can ocour simukaneously. € When no
genome & available, reads need 10 be assembled first into contigs or transcripts. For quantification, reads are mapped back 1o the novel reference
transcriptome and further analysis proceeds as In (b} followed by the functional annotation of the novel transcripts a5 in (a), Representative
software that can be used at each analysis step are indicated in bold text. Abbreviations: GFF General Festure Format, GTF gene transfer formae,
! RSEM RNA-Seq by Expectation Maxdmization

A survey of best practices for RNA-seq data analysis
Conesa et al (2016) Genome Biology. doi 10.1186/s13059-016-0881-8



RNA-Seq Approaches
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Fig. 2 Read mapping and transcript identification strateges. Three basic strategies for reguiar RNA-seq analysis. 8 An annotated genome is

available am) ranscript discovery and guantification can proceed with o
withoast an no Novel ransCript discovery s needed, reads can be mapped
10 the refesence tranrplome using an akgner. Transcript andd quantification can ocour simukaneously, € When no
genome & available, reads {80 CoNtigs or transcripts. For quantification, reads are mapped back 10 the novel reference
transcripome and further w by the functional annctation of the novel transcripts as in (a). Representative
software that can be used od In bold rext. Abbreviations: GFF General Festure Format, GTF gene transfer formae,

§ RSEM RNA-Seq by Expectation Maxdmization

A survey of best practices for RNA-seq data analysis
Conesa et al (2016) Genome Biology. doi 10.1186/s13059-016-0881-8



RNA-seq Challenges
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Challenge |: Eukaryotic genes are spliced
Solution: Use a spliced aligner, and assemble isoforms

TopHat: discovering spliced junctions with RNA-Seq.
Trapnell et al (2009) Bioinformatics. 25:0 1105-1111

Challenge 2: Read Count != Transcript abundance



RPKM, FPKM, TPM
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Counting Reads that align to a gene DOESN’T work!
- Overall Coverage: 1M reads in experiment 1 vs 10M reads in experiment 2
- Gene Length: gene 3 is 10kbp, gene 4 is 100kbp

1. RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped (Mortazavi et al, 2008)
=> \Wait a second, reads in a pair arent independent!

2. FPKM: Fragments Per Kilobase of Exon Per Million Reads Mapped (Trapnell et al, 2010)
=> Wait a second, FPKM depends on the average transcript length!

3. TPM: Transcripts Per Million (Li et al, 2011)

= If you were to sequence one million full length transcripts, TPM is the number of transcripts
you would have seen of type i, given the abundances of the other transcripts in your sample

_ : . ~_{ FPKM, "
=> Recommend you use TPM for all analysis, easy to compute given FPKM  TPM; = (W) .10



Gene or Isoform Quantification?

a I .- A
ool
A e .
Isciorm B - - JEE—
5 . [—— e —————— _ E,'_r,r"gw'(p
5 o . L " nodel
b Log oid-change og ‘oid-hange Log is-change
Condtion A Cornddoon B [ o ' Feorsect oourt) (170 SR ressr )

» - LR I - - aa» ' ‘nl‘,

e — oty . (n) “(.—)"" ‘(_9 e} .

.. L

T OGN

- a— - a—— {'} 0.4 0( ) ) rz.—(:_,‘ll-'?'ﬂ
L ——— e Y. S— T S e, el W— § \

= cosmam 0y —— --—— .,(‘} ' u-.,‘.‘).-m ,(‘ )
e ‘

Key point : The length of the actual molecule from which the fragments
derive is crucially important to obtaining accurate abundance estimates.

Differential analysis of gene regulation at transcript resolution with RNA-seq
Trapnell et al (2013) Nature Biotechnology 31, 46—-53. doi:10.1038/nbt.2450



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue
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The gene has three isoforms (red, green, blue) of the same length.
Our initial expectation is all 3 isoforms are equally expressed

There are five reads (a,b,c,d,e) mapping to the gene.
Read a maps to all three isoforms
Read d only to red
Reads b,c,e map to each of the three pairs of isoforms.

What is the most likely expression level of each isoform?

Models for transcript quantification from RNA-seq
Pachter, L (2011) arXiv. 1104.3889 [g-bio.GN]



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue

033 algned reads

transcript 0 £ with proportiona
abun o o assignment to
- L — transcripts
. 0
’ transcripts
green Pece v e s ttn sl algned o
n _— genome
o3 (

genome

The gene has three isoforms (red, green, blue) of the
same length. Initially every isoform is assigned the same
abundance (red=1/3, green=1/3, blue=1/3)

There are five reads (a,b,c,d,e) mapping to the gene.
Read a maps to all three isoforms, read d only to red, and
the other three (reads b,c,e) to each of the three pairs of
isoforms.

During the expectation (E) step reads are proportionately
assigned to transcripts according to the (current) isoform
abundances (RGB): a=(.33,.33,.33), b=(0,.5,.5), c=(.5,.5),
d=(1,0,0), e=(.5,.5,0)

Next, during the maximization (M) step isoform
abundances are recalculated from the proportionately
assigned read counts:

red: 0.47=(0.33+0.5+1+0.5)/(2.33 +1.33 + 1.33)
blue: 0.27 =(0.33 + 0.5+ 0.5)/(2.33 + 1.33 + 1.33)
green: 0.27 = (0.33 + 0.5 + 0.5)/(2.33 + 1.33 + 1.33)

Repeat until convergence!

Models for transcript quantification from RNA-seq

Pachter, L (2011) arXiv. 1104.3889 [q-bio.GN]



Sailfish: Fast & Accurate
RNA-seq Quantification
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Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
Patro et al (2014) Nature Biotechnology 32, 462—464 do0i:10.1038/nbt.2862



RNA-seq Challenges
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Challenge |: Eukaryotic genes are spliced
Solution: Use a spliced aligner, and assemble isoforms

TopHat: discovering spliced junctions with RNA-Seq.
Trapnell et al (2009) Bioinformatics. 25:0 1105-1111

Challenge 2: Read Count != Transcript abundance
Solution: Infer underlying abundances (e.g. TPM)

Transcript assembly and quantification by RNA-seq
Trapnell et al (2010) Nat. Biotech. 25(5): 511-515

Challenge 3: Transcript abundances are stochastic



How Many Replicates?
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Why don’t we have perfect replicates?

Mapping and quantifying mammalian transcriptomes by RNA-Seq
Mortazavi et al (2008) Nature Methods. 5, 62-628

RNA-seq differential expression studies: more sequence or more replication?
Liu et al (2013) Bioinformatics. doi:10.1093/bioinformatics/btt688
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RNA-seq Challenges

Challenge |: Eukaryotic genes are spliced
Solution: Use a spliced aligner, and assemble isoforms

TopHat: discovering spliced junctions with RNA-Seq.
Trapnell et al (2009) Bioinformatics. 25:0 1105-1111

Challenge 2: Read Count != Transcript abundance
Solution: Infer underlying abundances (e.g. TPM)

Transcript assembly and quantification by RNA-seq
Trapnell et al (2010) Nat. Biotech. 25(5): 511-515

Challenge 3: Transcript abundances are stochastic
Solution: Replicates, replicates, and more replicates

RNA-seq differential expression studies: more sequence or more
replication?
Liu et al (2013) Bioinformatics. doi: 10.1093/bioinformatics/btt688



Isoform Quantification Approaches
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StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Pertea M, et al. (2015) Nature Biotechnology. doi: 10.1038/nbt.3122.



Salmon: The ultimate
RNA-seq Pipeline!?
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Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
Love et al (2016) Nature Biotechnology 34, 1287-1291 (2016) doi:10.1038/nbt.3682

Salmon provides fast and bias-aware quantification of transcript expression
Patro et al (2017) Nature Methods (2017) doi:10.1038/nmeth.4197



Gene Ontology (GO)

AmiGO: online access to ontology and annotation data
Carbon et al (2009) Bioinformatics doi:10.1093/bioinformatics/btn615
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Aravind Subramanian et al. PNAS 2005;102:43:15545-15550

©2005 by National Academy of Sciences

Collections

The MSigDB gene sets are divided into 8 major collections:

halimark gene sets are coherently expressed

H ig 'es derived by aggregating many MSigDB
gene sets to represent well-defined biological states
or processes.

c positional gene sets for each human chromosome
and cytogenetic band.

curated gene sets from online pathway
cz databases, publications in PubMed, and knowledge
of domain experts.

motif gene sets based on conserved cis-regulatory
c3 motifs from a comparative analysis of the human,
mouse, rat, and dog genomes.,

c computational gene sets defined by mining large
collections of cancer-oriented microarray data.

c 5 GO gene sets consist of genes annotated by the
same GO terms.

oncogenic gene sets defined directly from
cs microarray gene expression data from cancer gene
perturbations.

immunologic gene sets defined directly from
c microarray gene expression data from immunologic
studies.

PNAS



Why Genes’

Each cell of your body
contains an exact copy
of your 3 billion base
pair genome.

F W o | y\x‘& %)
“@A Your body has a few
V\‘Xchromosome /\/ hundred (thousands?)
major cell types, largely
WI)@Q Ml defined by the gene
&

DNA expression patterns




Human Evolution

« Humans and chimpanzees
shared a common ancestor ~5-7

million years ago (Mya)

« Single-nucleotide substitutions
occur at a mean rate of 1.23%
but ~4% overall rate of mutation:
comprising ~35 million single
nucleotide differences and ~90
Mb of insertions and deletions

« Orthologous proteins in human
and chimpanzee are extremely
similar, with ~29% being
identical and the typical
orthologue differing by only two
amino acids, one per lineage

Initial sequence of the chimpanzee genome and comparison with the human genome
(2005) Nature 437, 69-87 doi:10.1038/nature04072



Human Evolution

~75 Mya

“In the roughly 75 million years since the divergence of the human and mouse lineages, the process of evolution
has altered their genome sequences and caused them to diverge by nearly one substitution for every two
nucleotides”

“The mouse and human genomes each seem to contain about 30,000 protein-coding genes. These
refined estimates have been derived from both new evidence-based analyses that produce larger and more
complete sets of gene predictions, and new de novo gene predictions that do not rely on previous evidence of
transcription or homology. The proportion of mouse genes with a single identifiable orthologue in the human
genome seems to be approximately 80%. The proportion of mouse genes without any homologue
currently detectable in the human genome (and vice versa) seems to be less than 1%.”

Initial sequencing and comparative analysis of the mouse genome
Chinwalla et al (2002) Nature. 420, 520-562 doi:10.1038/nature01262



Human Evolution

~75 Mya

~100 Mya

“We generated gene predictions for the dog genome using an evidence-based method (see Supplementary
Information). The resulting collection contains 719,300 dog gene predictions, with nearly all being clear
homologues of known human genes. The dog gene count is substantially lower than the ~22,000-gene
models in the current human gene catalogue (EnsEMBL build 26). For many predicted human genes, we find no
convincing evidence of a corresponding dog gene. Much of the excess in the human gene count is attributable
to spurious gene predictions in the human genome’

Genome sequence, comparative analysis and haplotype structure of the domestic dog
Lindblad-Toh et al (2005) Nature. 438, 803-819 doi:10.1038/nature04338



Human Evolution

~75 Mya

~100 Mya

~160 and 210 Mya

As expected, the majority of platypus genes (82%; 15,312 out of 18,596) have orthologues in these five
other amniotes (Supplementary Table 5). The remaining 'orphan' genes are expected to primarily reflect rapidly
evolving genes, for which no other homologues are discernible, erroneous predictions, and true lineage-specific
genes that have been lost in each of the other five species under consideration.

Genome analysis of the platypus reveals unique signatures of evolution
(2008) Nature. 453, 175-183 doi:10.1038/nature06936



Human Evolution

Digits and fin rays share common developmental histories
Nakamura et al (2016) Nature. 537, 225-228. doi:10.1038/nature19322




More Information

“Anything found to be true of
E. coli must also be true of
elephants”

-Jacques Monod
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Methyl-seq
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Finding the fifth base: Genome-wide sequencing of cytosine methylation
Lister and Ecker (2009) Genome Research. 19:959-966



Epigenetic Modifications to DNA
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Methylation of CpG Islands

Typical mammalian DNA methylation landscape

101101 0 AR o ) S i ¢ = ? ! 1Y

CpG Island Transposable CpG Island Gene
element

? methylated CpG
T unmethylated CpG

CpG islands are (usually) defined as regions with

) alength greater than 200bp,

2) a G+C content greater than 50%,

3) aratio of observed to expected CpG greater than 0.6

Methylation in promoter regions correlates negatively with gene expression.

* CpG-dense promoters of actively transcribed genes are never methylated

* In mouse and human, around 60-70% of genes have a CpG island in their promoter region and most of these
CpG islands remain unmethylated independently of the transcriptional activity of the gene

e Methylation of DNA itself may physically impede the binding of transcriptional proteins to the gene

* Methylated DNA may be bound by proteins known as methyl-CpG-binding domain proteins (MBDs) that can
modify histones, thereby forming compact, inactive chromatin, termed heterochromatin.



OPEN G ACCESS Freely available online

PLOS morocy

The Honey Bee Epigenomes: Differential Methylation of
Brain DNA in Queens and Workers

Frank Lyko'”, Sylvain Foret®”, Robert Kucharski®, Stephan Wolf*, Cassandra Falckenhayn’, Ryszard

Maleszka’*

1 Division of Epigenetics, DI Z-ZVBH Allarce, German Cancer Ressarch Center, Meldelberg, Germany, 2 ARC Centre of Dxcelionce for Coral Reef Studien, James Cook
Univensity, Towraville, Austealia, 3 Reseacch School of Biclogy, the Australian National Unhversity, Canberra, Australia, 4 Genomics and Proteomics Core Facility, German

Cancer Research Conter, Hoidelberg, Germany
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“The queen honey bee and her worker sisters
do not seem to have much in common.Workers
are active and intelligent, skillfully navigating the
outside world in search of food for the colony.

" They never reproduce; that task is left entirely to

the much larger and longer-lived queen, who is
permanently ensconced within the colony and
uses a powerful chemical influence to exert
control. Remarkably, these two female castes are
generated from identical genomes.The key to
each female's developmental destiny is her diet
as a larva: future queens are raised on royal
jelly. This specialized diet is thought to affect a
particular chemical modification, methylation, of
the bee's DNA, causing the same genome to be
deployed differently.
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Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm
Ong-Abdullah, et al (2015) Nature. doi:10.1038/nature 5365
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Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm

Ong-Abdullah, et al (2015) Nature. doi:10.1038/nature 5365
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Somaclonal variation arises in plants and animals when
differentiated somatic cells are induced into a pluripotent state, but
i the resulting clones differ from each other and from their parents. l}
| In agriculture, somaclonal variation has hindered the
micropropagation of elite hybrids and genetically modified crops,
but the mechanism responsible remains unknown. The oil palm
fruit ‘mantled’ abnormality is a somaclonal variant arising from
tissue culture that drastically reduces yield, and has largely halted
efforts to clone elite hybrids for oil production..Widely regarded as
% an epigenetic phenomenon, ‘mantling’ has defied explanation, but
4| here we identify the MANTLED locus using epigenome-wide
Wl association studies of the African oil palm Elaeis guineensis. DNA
hypomethylation of a LINE retrotransposon related to rice Karma,
| in the intron of the homeotic gene DEFICIENS, is common to all
mantled clones and is associated with alternative splicing and
premature termination. Dense methylation near the
Karma splice site (termed the Good Karma
epiallele) predicts normal fruit set, whereas
hypomethylation (the Bad Karma epiallele)
predicts homeotic transformation,
parthenocarpy and marked loss of yield. Loss of
Karma methylation and of small RNA in tissue culture contributes
to the origin of mantled, while restoration in spontaneous
K. revertants accounts for non-Mendelian inheritance.The ability to
b predict and cull mantling at the plantlet stage will facilitate the

introduction of higher performing clones and optimize
T i e SRS et T

environmentally sensitive land resources.
Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm
Ong-Abdullah, et al (2015) Nature. doi:10.1038/nature 5365
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Hypomethylation distinguishes genes
of some human cancers
from their normal counterparts

Andrew P, Feinberg & Bert Vogelstein

Cell Structure and Function Laboratory, The Oncology Center,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, USA

It has been suggested that cancer represents an alterstion in
DNA, beritable by progeay cells, that leads to abnormally
regulsted expression of normal cellular genes; DNA alterations
such as mutations’”, rearrangements’ * and changes in methyla-
tion** have been proposed to have such a role. Because of

evidence that DNA methylation Is important in gene

(for review see refs 7, 9-11), several investigators
have studied DNA methylation in animal tumours, transformed
cells and lenksemin cells in culture™' "™, The results of these
studies have varied; depending on the technigues and systems
wsed, an increase'’ ™", decrense™ ™, or no change™ ™ in the
degree of methylation has been reported. To our knowledge,
however, primary human tumour tissues have not been used
in such studies. We have now examined DNA methylation in
human cancer with three considerations im mind: (1) the methy-

and (3) Hpall and Hhal cleavage sites should be present in the
regions of the genes.

The first cancer studied was a grade D (ref. 43), moderately
well differentiated adenocarcinoma of the colon from a 67-yr-
old male. Tissue was obtained from the cancer itself and also
from colonic mucosa stripped from the colon at a site just
outside the histologically proven tumour margin. Figure 1 shows
the pattern of methylation of the studied genes. Before digestion
with restriction enzymes, all DNA samples used in the study
had a size >25,000 base pairs (bp). After Hpall cleavage,
hybridization with a probe made from a cDNA dlone of human
growth hormone (HGH) showed that significantly more of the
DNA was digested to low-molecular weight fragments in DNA
from the cancer (labelled C in Fig. 1) than in DNA from the
normal colonic mucosa (labelled N). In the hybridization conds-
tions used, the HGH probe detected the human growth hor-
mone genes & well as the related chorionic somatotropin
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Nature 301,89 - 92 (06 January 1983); doi:10.1038/301089a0



Bisulfite Conversion

Treating DNA with sodium bisulfite
will convert unmethylated Cto T

* 5-MethylC will be protected and not
change, so can look for differences when

mapping

* Requires great care when analyzing reads,
since the complementary strand will also be
converted (G to A)

* Typically analyzed by mapping to a “reduced
alphabet” where we assume all Cs are
converted to Ts once on the forward strand
and once on the reverse
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Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications

Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572.




Bisulfite Conversion
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Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications
Krueger and Andrews (2010) Bioinformatics. 27 (11): 1571-1572.
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Methylation changes in cancer
detected by Nanopore Sequencing
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Comparison of bisulfite sequencing and nanopore-based R7.3 data in reduced representation data sets from cancer and normal cells. (a) Raw
data (points) and smoothed data (lines) for methylation, as determined by bisulfite sequencing (top) and nanopore-based sequencing using an

R7.3 pore (bottom), in a genomic region from the human mammary epithelial cell line MCFIOA (green) and metastatic mammary epithelial

cell line MDA-MB-231 (orange). (b) Same region as in a but with individual nanopore reads plotted separately. Each CpG that can be called is
a point. Blue indicates methylated; red indicates unmethylated.

Detecting DNA cytosine methylation using nanopore sequencing
Simpson,Workman, Zuzarte, David, Dursi, Timp (2017) Nature Methods. doi:10.1038/nmeth.4184



ChlP-seq
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Genome-wide mapping of in vivo protein-DNA interactions.
Johnson et al (2007) Science. 316(5830):1497-502
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https://www.youtube.com/watch?v=WsofH466Iqk



