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Assighment 4: Due March |

Assignment 4: Read mapping and variant calling

Assignment Date: Thursday, Feb, 22, 2018
Due Date: Thursday, Mar. 1, 2018 @ 11:59pm

Assignment Overview

In this assignment, you will align reads 10 a reference genome to call SNPs and short indels. Then, you will perform an
experiment to empirically determine the *mappability” of a genomic region. Finally, you will investigate some empirical
behavior of the binomial test for heterozygous variant calling.

As a reminder, any questions about the assignment should be posted to Plazza. Don't forget to read the Resources section
at the bottom of the page!

Question 1. Small Variant Analysis [10 pts]

Download chromosome 22 from build 38 of the human genome from here:
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/chr22.fa gz

Download the read set from here:
httpe//schatzlab.cshi edu/data/teaching/sample gz

For this question, you may find this tutorial helpful:
http://clavius. be.edu/~erik/CSHL-advanced-sequencing/freebayes-tutorial htmi

« 1a. How many reads align to the reference? How many reads did not align? How many aligned reads had a mate that
did not align (AKA singletons)? Count each read in a pair separatedy,
[Hint: Build the index using bowtie2-build , align reads using bowtie2 , analyze with saatools flagstat ]




Assignment 5: Due March 8

Assignment 5: Genome Arithmetic

Assignment Date: Thursday, March 1, 2018
Due Date: Thursday, March 8, 2018 @ 11:58pm

Assignment Overview

In this assignment, you will call structural variants and analyze the properties of variants in the human genome. Make sure to
show your work in your writeup! As before, any questions about the assignment should be posted to Plazza.

Question 1. Gene Annotation Preliminaries [10 pts)

Download the annotation of bulld 38 of the human genome from here:
ftp://Mp.ensembl.org/pubfrelease-87/gt! fhomo_sapiens/Homo_sapiens GRCh38.87.g1.g2

» Question 1a. How many many GTF data lines are in this file? [Hint: The first few lines in the file beginning with “#" are
so-called “header” lines describing thing like the creation date, the genome version (more on that later in the course),
e1c. Header lines should not be counted as data lines.]

« Question 1b. How many annotated protein coding genes are on each autosome of the human genome? [Hint: Protein
coding genes will have “gene” in the 3rd column, and contain the following text: gene_biotype "protein_coding™)

« Question 1¢. What is the maximum, minimum, mean, and standard deviation of the span of protein coding genes? [Mint:
use the genes identified in 1b)

» Question 1d. What is the maximum, minimum, mean, and standard deviation in the number of exons for protein coding
genes? [Hint: you should separately consider each isoform for each protein coding gene)




Campylobacter jejuni RM1221 30.3%GC
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Mycobacterium smegmatis MC2 67.4%GC



Flipping a Biased Coin

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

$ ./coinflip.pl 0.046875 1000

0:  HHHHHHHHHHHHHHT 15

1:  HHHHHHT 7

2. HHHHHHHHHHHT 12

3:  HHHHHHHHHHHHHHHHHHHHHHHT 24

4 HT 2

5. HHHHHHHHHHHHHT 14

6:  HHHHHHHHHT 10

7:  HHHHHHHHHHHHHT 14

8: HHHHHT 6

9:  HHHHHHHHHHT 11

10:  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
11:  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHT - 40
12:  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHT 45
13: HHHT 4

14:  HHHHHHHHHHHHHHT 15

15:  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHT 39

16: HHHHHT 6

17:  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHT 38

18:  HHHHHHHHHHHHHHHHHHHHHHHHHT 26

19:  HHHHHHHHHHHT 12
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Flipping a Biased Coin

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)
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Flipping a Biased Coin

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

Geometric Distribution: P(X=X) = Preads* ' Ptais

geom(p=3/64)

Flips until heads
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Flipping a Biased Coin

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

Geometric Distribution: P(X=X) = Preads* ' Ptais

geom(p=3/64)
geom(p=6/64)
geom(p=9/64)

Flips until heads

100




Flipping a Biased Coin

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

Geometric Distribution: P(X=X) = Preads* ' Ptais

40

geom(p=3/64) mean=64/3 = 21.3
geom(p=6/64) mean=64/6 = 10.6
o geom(p=9/64) mean=64/9 = 7.1

num trials

30

20

10

Flips until heads

100




Stop Codon Frequencies
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If the sequence is mostly A+T, then likely to form stop codons by chance!

In High A+T (Low G+C):
Frequent stop codons; Short Random ORFs; long ORFs likely to be true genes

In High G+C (Low A+T):
Rare stop codons; Long Random ORFs; harder to identify true genes

A relationship between GC content and coding-sequence length.
Oliver & Marin (1996) J Mol Evol. 43(3):216-23.



Soon et al., Molecular Systems Biology, 2013
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Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
Serlie et al (2001) PNAS. 98(19):10869-74.
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RNA-seq Overview

Generate cDNA, fragment,

Samples of interest Isolate RNAs
size select, add linkers
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39 by intron 100s of millions of paired reads
1 10s of billions bases of sequence

Downstream analysis



RNA-seq Challenges

~ = | Challenge |: Eukaryotic genes are spliced
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RNA-Seq Approaches
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Fig. 2 Read mapping and transcript identification strategies. Three basic strategies for regular RNA-seq analysis. 8 An annotated genome is
available and reads are mapped 10 the genome with a gapped mapper. Next (noves) ransript discovery and guantification can proceed with o
without an annotation file. Novel transcripes are then functionally annotated. b Iif no novel transcript discovery is needed, reads can be mapped
10 the refesence transriptome wsing an ungapped aligner. Transcript identification and quantification can ocour simukaneously. € When no
genome & available, reads need 10 be assembled first into contigs or transcripts. For quantification, reads are mapped back 1o the novel reference
transcriptome and further analysis proceeds as In (b} followed by the functional annotation of the novel transcripts a5 in (a), Representative
software that can be used at each analysis step are indicated in bold text. Abbreviations: GFF General Festure Format, GTF gene transfer formae,
! RSEM RNA-Seq by Expectation Maxdmization

A survey of best practices for RNA-seq data analysis
Conesa et al (2016) Genome Biology. doi 10.1186/s13059-016-0881-8



RNA-Seq Approaches
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Fig. 2 Read mapping and transcript identification strateges. Three basic strategies for reguiar RNA-seq analysis. 8 An annotated genome is

available am) ranscript discovery and guantification can proceed with o
withoast an no Novel ransCript discovery s needed, reads can be mapped
10 the refesence tranrplome using an akgner. Transcript andd quantification can ocour simukaneously, € When no
genome & available, reads {80 CoNtigs or transcripts. For quantification, reads are mapped back 10 the novel reference
transcripome and further w by the functional annctation of the novel transcripts as in (a). Representative
software that can be used od In bold rext. Abbreviations: GFF General Festure Format, GTF gene transfer formae,

§ RSEM RNA-Seq by Expectation Maxdmization

A survey of best practices for RNA-seq data analysis
Conesa et al (2016) Genome Biology. doi 10.1186/s13059-016-0881-8



RNA-seq Challenges
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Challenge |: Eukaryotic genes are spliced
Solution: Use a spliced aligner, and assemble isoforms

TopHat: discovering spliced junctions with RNA-Seq.
Trapnell et al (2009) Bioinformatics. 25:0 1105-1111

Challenge 2: Read Count != Transcript abundance



RPKM, FPKM, TPM
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Counting Reads that align to a gene DOESN’T work!

- Overall Coverage: 1M reads in experiment 1 vs 10M reads in experiment 2
- Gene Length: gene 3 is 10kbp, gene 4 is 100kbp

1. RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped (Mortazavi et al, 2008)



RPKM, FPKM, TPM
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Counting Reads that align to a gene DOESN’T work!

- Overall Coverage: 1M reads in experiment 1 vs 10M reads in experiment 2
- Gene Length: gene 3 is 10kbp, gene 4 is 100kbp

1. RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped (Mortazavi et al, 2008)

(Count reads aligned to gene) / (length of gene in kilobases) / (# millions of read mapped)

=> \Wait a second, reads in a pair arent independent!



RPKM, FPKM, TPM
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Counting Reads that align to a gene DOESN’T work!

- Overall Coverage: 1M reads in experiment 1 vs 10M reads in experiment 2
- Gene Length: gene 3 is 10kbp, gene 4 is 100kbp

1. RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped (Mortazavi et al, 2008)
=> Wait a second, reads in a pair arent independent!

2. FPKM: Fragments Per Kilobase of Exon Per Million Reads Mapped (Trapnell et al, 2010)
= Does a much better job with short exons & short genes by boosting coverage

= Wait a second, FPKM depends on the average transcript length!



RPKM, FPKM, TPM
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Counting Reads that align to a gene DOESN’T work!
- Overall Coverage: 1M reads in experiment 1 vs 10M reads in experiment 2
- Gene Length: gene 3 is 10kbp, gene 4 is 100kbp

1. RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped (Mortazavi et al, 2008)
=> \Wait a second, reads in a pair arent independent!

2. FPKM: Fragments Per Kilobase of Exon Per Million Reads Mapped (Trapnell et al, 2010)
=> Wait a second, FPKM depends on the average transcript length!

3. TPM: Transcripts Per Million (Li et al, 2011)

= If you were to sequence one million full length transcripts, TPM is the number of transcripts
you would have seen of type i, given the abundances of the other transcripts in your sample

_ : . ~_{ FPKM, "
=> Recommend you use TPM for all analysis, easy to compute given FPKM  TPM; = (W) .10



Gene or Isoform Quantification?
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Differential analysis of gene regulation at transcript resolution with RNA-seq
Trapnell et al (2013) Nature Biotechnology 31, 46—-53. doi:10.1038/nbt.2450



Gene or Isoform Quantification?
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Differential analysis of gene regulation at transcript resolution with RNA-seq
Trapnell et al (2013) Nature Biotechnology 31, 46—-53. doi:10.1038/nbt.2450



Gene or Isoform Quantification?
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Differential analysis of gene regulation at transcript resolution with RNA-seq
Trapnell et al (2013) Nature Biotechnology 31, 46—-53. doi:10.1038/nbt.2450



Gene or Isoform Quantification?

a I .- A
ool
A e .
Isciorm B - - JEE—
5 . [—— e —————— _ E,'_r,r"gw'(p
5 o . L " nodel
b Log oid-change og ‘oid-hange Log is-change
Condtion A Cornddoon B [ o ' Feorsect oourt) (170 SR ressr )

» - LR I - - aa» ' ‘nl‘,

e — oty . (n) “(.—)"" ‘(_9 e} .

.. L

T OGN

- a— - a—— {'} 0.4 0( ) ) rz.—(:_,‘ll-'?'ﬂ
L ——— e Y. S— T S e, el W— § \

= cosmam 0y —— --—— .,(‘} ' u-.,‘.‘).-m ,(‘ )
e ‘

Key point : The length of the actual molecule from which the fragments
derive is crucially important to obtaining accurate abundance estimates.

Differential analysis of gene regulation at transcript resolution with RNA-seq
Trapnell et al (2013) Nature Biotechnology 31, 46—-53. doi:10.1038/nbt.2450



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue
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The gene has three isoforms (red, green, blue) of the same length.
Our initial expectation is all 3 isoforms are equally expressed

There are five reads (a,b,c,d,e) mapping to the gene.
Read a maps to all three isoforms
Read d only to red
Reads b,c,e map to each of the three pairs of isoforms.

What is the most likely expression level of each isoform?

Models for transcript quantification from RNA-seq
Pachter, L (2011) arXiv. 1104.3889 [g-bio.GN]



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue

The gene has three isoforms (red, green, blue) of the
same length. Initially every isoform is assigned the same

a;?:::s:ys o " o w;:sp'm:?!?
‘ - 0—-._0 .—c . 9 weess  gbundance (red=1/3, green=1/3, blue=1/3)
> blue . transcripts
green B T i s v P algnec o
Sl e There are five reads (a,b,c,d,e) mapping to the gene.

o Read a maps to all three isoforms, read d only to red, and
the other three (reads b,c,e) to each of the three pairs of
isoforms.

03 ‘ aligned reads

During the expectation (E) step reads are proportionately
assigned to transcripts according to the (current) isoform
abundances (RGB): a=(.33,.33,.33), b=(0,.5,.5), c=(.5,.5),
d=(1,0,0), e=(.5,.5,0)

Models for transcript quantification from RNA-seq
Pachter, L (2011) arXiv. 1104.3889 [g-bio.GN]



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue

The gene has three isoforms (red, green, blue) of the
s S@ame length. Initially every isoform is assigned the same

) - -9 =T abundance (red=1/3, green=1/3, blue=1/3)

algned
_ _ genome

There are five reads (a,b,c,d,e) mapping to the gene.
Read a maps to all three isoforms, read d only to red, and
the other three (reads b,c,e) to each of the three pairs of
isoforms.

genome

During the expectation (E) step reads are proportionately
assigned to transcripts according to the (current) isoform
abundances (RGB): a=(.33,.33,.33), b=(0,.5,.5), c=(.5,.5),
d=(1,0,0), e=(.5,.5,0)

Next, during the maximization (M) step isoform
abundances are recalculated from the proportionately
assigned read counts:

red: 0.47=(0.33+0.5+1+0.5)/(2.33 +1.33 + 1.33)
blue: 0.27 =(0.33 + 0.5+ 0.5)/(2.33 + 1.33 + 1.33)
green: 0.27 = (0.33 + 0.5 + 0.5)/(2.33 + 1.33 + 1.33)

Models for transcript quantification from RNA-seq
Pachter, L (2011) arXiv. 1104.3889 [g-bio.GN]



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue

The gene has three isoforms (red, green, blue) of the
o teen o © . _ @ "ewww same length. Initially every isoform is assigned the same
2 ¢ - = wwss  gbundance (red=1/3, green=1/3, blue=1/3)

algned
_ genome

There are five reads (a,b,c,d,e) mapping to the gene.
Read a maps to all three isoforms, read d only to red, and
the other three (reads b,c,e) to each of the three pairs of
-@ isoforms.

genome

— AT e During the expectation (E) step reads are proportionately
assigned to transcripts according to the (current) isoform
abundances (RGB): a=(.33,.33,.33), b=(0,.5,.5), c=(.5,.5),
d=(1,0,0), e=(.5,.5,0)

Next, during the maximization (M) step isoform
abundances are recalculated from the proportionately
assigned read counts:

red: 0.47=(0.33+0.5+1+0.5)/(2.33 +1.33 + 1.33)
blue: 0.27 =(0.33 + 0.5+ 0.5)/(2.33 + 1.33 + 1.33)
green: 0.27 = (0.33 + 0.5 + 0.5)/(2.33 + 1.33 + 1.33)

Repeat until convergence!

Models for transcript quantification from RNA-seq
Pachter, L (2011) arXiv. 1104.3889 [g-bio.GN]



Multi-mapping? Isoform ambiguity?
Expectation Maximization to the Rescue

033 algned reads
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The gene has three isoforms (red, green, blue) of the
same length. Initially every isoform is assigned the same
abundance (red=1/3, green=1/3, blue=1/3)

There are five reads (a,b,c,d,e) mapping to the gene.
Read a maps to all three isoforms, read d only to red, and
the other three (reads b,c,e) to each of the three pairs of
isoforms.

During the expectation (E) step reads are proportionately
assigned to transcripts according to the (current) isoform
abundances (RGB): a=(.33,.33,.33), b=(0,.5,.5), c=(.5,.5),
d=(1,0,0), e=(.5,.5,0)

Next, during the maximization (M) step isoform
abundances are recalculated from the proportionately
assigned read counts:

red: 0.47=(0.33+0.5+1+0.5)/(2.33 +1.33 + 1.33)
blue: 0.27 =(0.33 + 0.5+ 0.5)/(2.33 + 1.33 + 1.33)
green: 0.27 = (0.33 + 0.5 + 0.5)/(2.33 + 1.33 + 1.33)

Repeat until convergence!

Models for transcript quantification from RNA-seq

Pachter, L (2011) arXiv. 1104.3889 [q-bio.GN]



Sailfish: Fast & Accurate
RNA-seq Quantification
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all100800nnenlls
Transcripts with Reallocate Average k-mer Pearson 0.85 0.82 0.85 0.85 0.96 0.96 0.95 0.94
currentk-mer . k-mers based __~  coverage Spearman 0.84  0.80 0.85 0.85 0.76 0.77 0.77 0.75
allocations on abundance RMSE = ~- - - 606 890 883  10.05
estimates medPE ‘- - - - 6.50 1248 14.06 12.42

Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
Patro et al (2014) Nature Biotechnology 32, 462—464 do0i:10.1038/nbt.2862



