Applied Comparative Genomics

Michael Schatz

January 30, 2018 Lecture 1: Course Overview

DNA: The secret of life

Your DNA, along with your environment and experiences, shapes who you are

- Height
- Hair, eye, skin color
- Broad/narrow, small/large features
- Susceptibility to disease
- Response to drug treatments
- Longevity and cognition

Physical traits tend to be strongly genetic, social characteristics tend to be strongly environmental, and everything else is a combination

Genomics across the tree of life

Unsolved Questions in Biology

- What is your genome sequence?
 - The instruments provide the data, but none of the answers to any of these questions.
 - What software and systems will?
 - And who will create them?
- Plus thousands and thousands more

Welcome!

The primary goal of the course is for students to be grounded in theory and leave the course empowered to conduct independent genomic analyses.

- We will study the leading computational and quantitative approaches for comparing and analyzing genomes starting from raw sequencing data.
- The course will focus on human genomics and human medical applications, but the techniques will be broadly applicable across the tree of life.
- The topics will include genome assembly & comparative genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, and cancer genomics.

Course Webpage:	<u>https://github.com/schatzlab/appliedgenomics2018</u>
Course Discussions:	<u>http://piazza.com</u>
Class Hours:	Tues + Thurs @ 1:30p – 2:45p, Shaffer 304
Schatz Office Hours:	Tues + Thurs @ 3-4p and by appointment
Darby Office Hours:	Wed @ 4-5 and by appointment
Ple	ease try Piazza first!

Prerequisites and Resources

Prerequisites

- No formal course requirements
- Access to an Apple or Linux Machine, or Install VirtualBox
- Familiarity with the Unix command line for exercises
 - bash, ls, grep, sed, + install published genomics tools
- Familiarity with a major programming language for project
 - C/C++, Java, R, Perl, Python

Primary Texts

• None! We will be studying primary research papers

Other Resources:

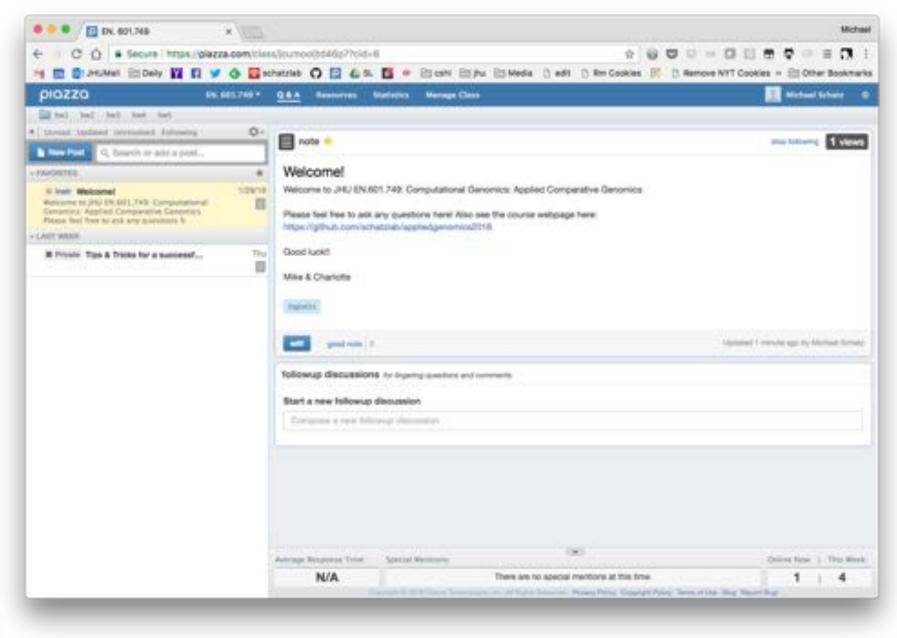
- Google, SEQanswers, Biostars, StackOverflow
- Applied Computational Genomics Course at UU: Spring 2017
- <u>https://github.com/quinlan-lab/applied-computational-genomics</u>
- Ben Langmead's teaching materials:
- http://www.langmead-lab.org/teaching-materials/

Grading Policies

Assessments:

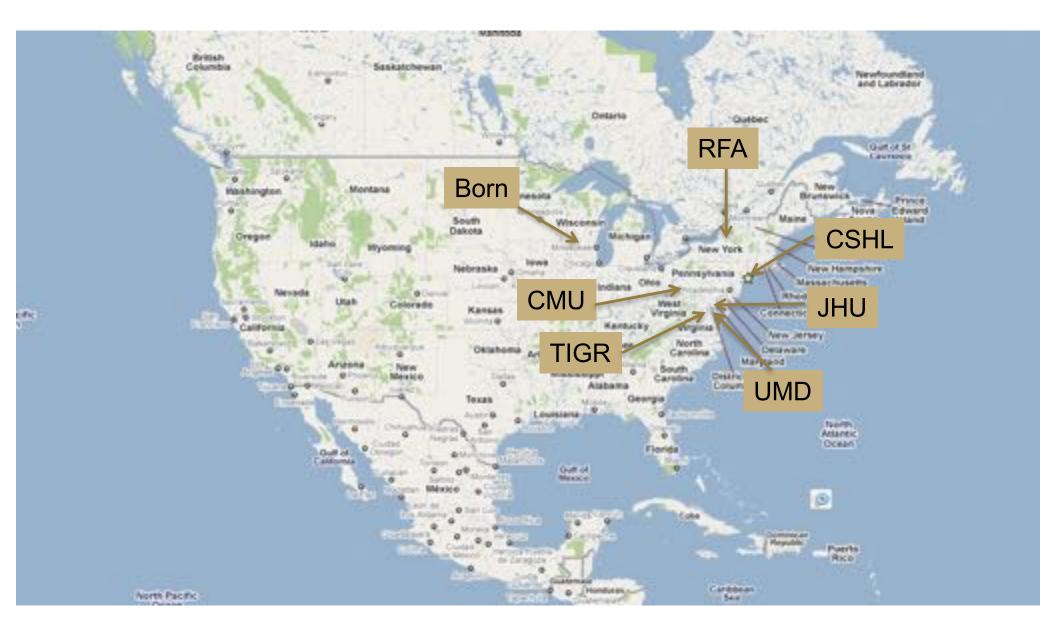
- 6 Assignments: 30% Due at 11:59pm a week later
 Practice using the tools we are discussing
- I Exam: 30% In class (Tentatively 4/3)
 Assess your performance, focusing on the methods
- I Class Project: 40% Presented last week of class
 Significant project developing a novel analysis/method
- In-class Participation: Not graded, but there to help you!

Policies:


- Scores assigned relative to the highest points awarded
- Automated testing and grading of assignments
- Late Days:
 - Four (4) chances to extend the deadline for assignments by 24 hours without any penalty

Course Webpage

C O Intelligeneral 2018/06.001 + 1000	
C This resultance in the Public Section Marketplace Explore	▲ +- Q-
0 schatzlab / appliedgenomics2018	Olomiti I Alter 1 View
Ex Code Comman & Childrenguerra & Childrenguerra & Childrenguerra & Childrenguerra & Childrenguerra	
Iteon name + appliedgenomi(s2018 / README.md	Find the Dopy aut
C estarby Update HENCARE.mat	Modul2 A hours op
2 somethinger IR	
Th Larma (00 start) (01-0-08)	ter lists Hone C / 1
JHU EN.601.749: Computational Genomics: Applied Compara Prof. Method Schartz (Inschatz & cs./hu.edu) TA: Chartette Darky (otderby @ Pruedu) Class Hours: Tuesday = Thursday @ 100p - 2:45p in Shafter 304	tive Genomics
Prof. Michael Schatz (Inschatz @ cs.)hu.edul	tive Genomics
Prof. Michael Schatz (Inschatz & cs./hu.edu) TA: Chartotte Darky (oldarby @ /hu.edu) Class Hours: Tuesday + Thursday @ 1:30p - 2:45p in Shafter 304 Schatz Office Hours: Tuesday + Thursday @ 3:4p in Malore 323 and by appointment Darby Office Hours: Wednesday @ 4pm and by appointment Darby Office Hours: Wednesday @ 4pm and by appointment The primary goal of the course is for students to be grounded in theory and leave the course empowered to con study the leading computational and quantitative approaches for comparing and analyzing genomes starting from its	duct independent genomic analyses. We will w sequencing data. The course will focus on
Prof. Michael Schatz (Inschatz & os.)hu.edul TA: Chariotte Darby (ostarby & Pruedul Class Hours: Tuesday + Thursday @ 1:30p - 2:45p in Shafter 304 Schatz Office Hours: Tuesday + Thursday @ 3:4p in Malone 323 and by appointment Darby Office Hours: Wednesday @ 4pm and by appointment The primery goal of the course is for students to be grounded in theory and leave the course empowered to con	duct independent genomic analyses. We will w sequencing data. The course will focus on te. The topics will include genome assembly & d cancer genomics. The grading will be based
Prof. Monael Scharz (michaiz & cs./hu.edu) TA: Chartotte Darky (ostartity & plu.edu) Class Hours: Tuesday + Thursday @ 1:30p - 2:45p in Shafter 304 Scharz Office Hours: Tuesday + Thursday @ 3:4p in Malore 323 and by appointment Darby Office Hours: Wednesday @ 4pm and by appointment The primary goal of the course is for students to be grounded in theory and leave the course empowered to con study the leading computational and quantitative approaches for comparing and analyzing genomes starting from its human genomics and human medical applications, but the techniques will be broadly applicable across the tree of 8 comparative genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, an on assignments, a midterm exam, class presentations, and a significant class project. There are no formal course print	duct independent genomic analyses. We will w sequencing data. The course will focus on te. The topics will include genome assembly & d cancer genomics. The grading will be based
Prof. Mohael Schatz (inschatz & cs./hu.edu) TA: Characte Darky (olderby @ /hu.edu) Class Hours: Tuesday + Thursday @ 1:30p - 2:45a is Shafter 304 Schatz Office Hours: Tuesday + Thursday @ 3:4p in Malone 323 and by appointment Darby Office Hours: Wetnesday @ 4pm and by appointment Darby Office Hours: Sectional and quantitative approaches for comparing and analyzing genomes starting from its human genomics and human medical applications, but the techniques will be broadly applicable across the tree of 8 comparative genomics, variant identification & analysis, gene expression & regulation, perional genome analysis, an or assignments, a midterm exam, class presentations, and a significant class project. There are no formal course pri familiarity with UNIX scripting and/or programming to complete the assignments and course project.	duct independent genomic analyses. We will w sequencing data. The course will focus on fs. The topics will include genome assembly & d cancer genomics. The grading will be based erequisites, although the course will require
Prof. Monael Scharz (inscharz & os (hu edu) Ta Charotte Darby (osterby @ hu edu) Class Hours: Tuesday + Thursday @ 1300 - 2.4% is Shafter 304 Sohatz Office Hours: Tuesday + Thursday @ 1300 - 2.4% is Matter 323 and by appointment Darby Office Hours: Tuesday + Thursday @ 1300 - 2.4% is Matter 323 and by appointment Darby Office Hours: Tuesday + Thursday @ 3.40 in Matore 323 and by appointment Darby Office Hours: Wethesday @ 4pm and by appointment Darby Office Hours: Wethesday @ 4pm and by appointment The primary goal of the course is for students to be grounded in theory and leave the course empowered to com shudy the leading computational and quantitative approaches for comparing and analyzing genomes starting from its human genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, and on assignments, a midterm exam, class presentations, and a significant class project. There are no formal course pr tuesliarity with UNIX scripting and/or programming to complete the assignments and course project. Precediates • Online introduction to Unix/Linux Students are strongly recommended to complete one of the following online to elicite eladenty's Intro to Unix/Linux Students are strongly recommended to complete one of the following online to elicite eladenty's Intro to Unix/Linux Students are strongly recommended to complete one of the following online to elicite eladenty's Intro to Unix/Linux Students are strongly recommended to complete one of the following online to elicite eladenty's Intro to Unix/Linux Students are strongly recommended to complete one of the following online to elicite eladenty's Intro to Unix	duct independent genomic analyses. We will w sequencing data. The course will focus on fs. The topics will include genome assembly & d cancer genomics. The grading will be based erequisites, atthough the course will require
Prof. Monaet Schatz (Inschatz & cs.)/w.edul TA: Charlots Darby (selety & jiw.edu) Class Hours: Tuesday + Thursday @ 1309 - 2-45a in Shafter 304 Schatz Office Hours: Tuesday + Thursday @ 3-4p in Malore 323 and by appointment Darby Office Hours: Wetnesday @ 4pm and by appointment Darby Office Hours: Wetnesday @ 4pm and by appointment The primary goal of the course is for students to be grounded in theory and leave the course empowered to con- study the leading computational and quantitative approaches for comparing and analyzing genomes starting from to human genomics and human medical applications, but the techniques will be broadly applicable across the tree of it conservative genomics, variant identification & analysis, gene expression & regulation, personal genome analysis, and in assignments, a midtern exam, class presentations, and a significant class project. There are no formal course pr familiarity with UNIX scripting and/or programming to complete the assignments and course project. Preceptione	duct independent genomic analyses. We will w sequencing data. The course will focus on fs. The topics will include genome assembly & d cancer genomics. The grading will be based erequisites, attrough the course will require


https://github.com/schatzlab/appliedgenomics2018

Piazza

http://piazza.com/jhu/spring2018/en601749

A Little About Me


Schatzlab Overview

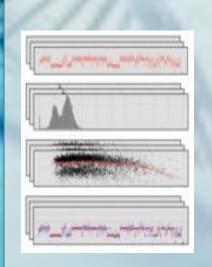
Human Genetics

Role of mutations in disease

Feigin et al. (2017) Fang et *al.* (2016)

Agricultural Genomics

Genomes & Transcriptomes

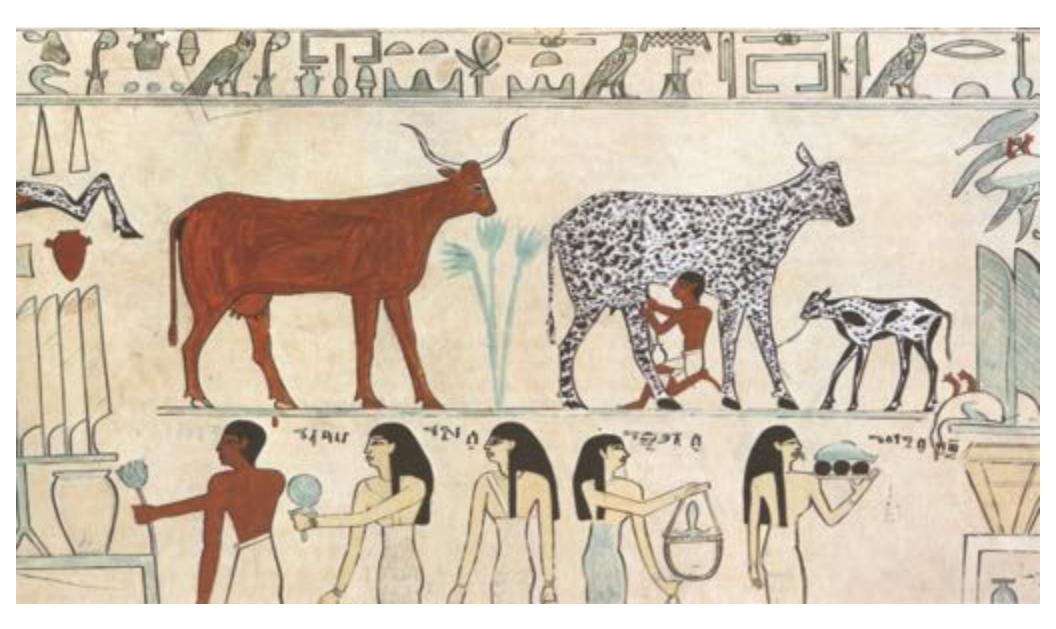

Lemmon et al. (2016) Ming et al. (2015)

Algorithmics & Systems Research

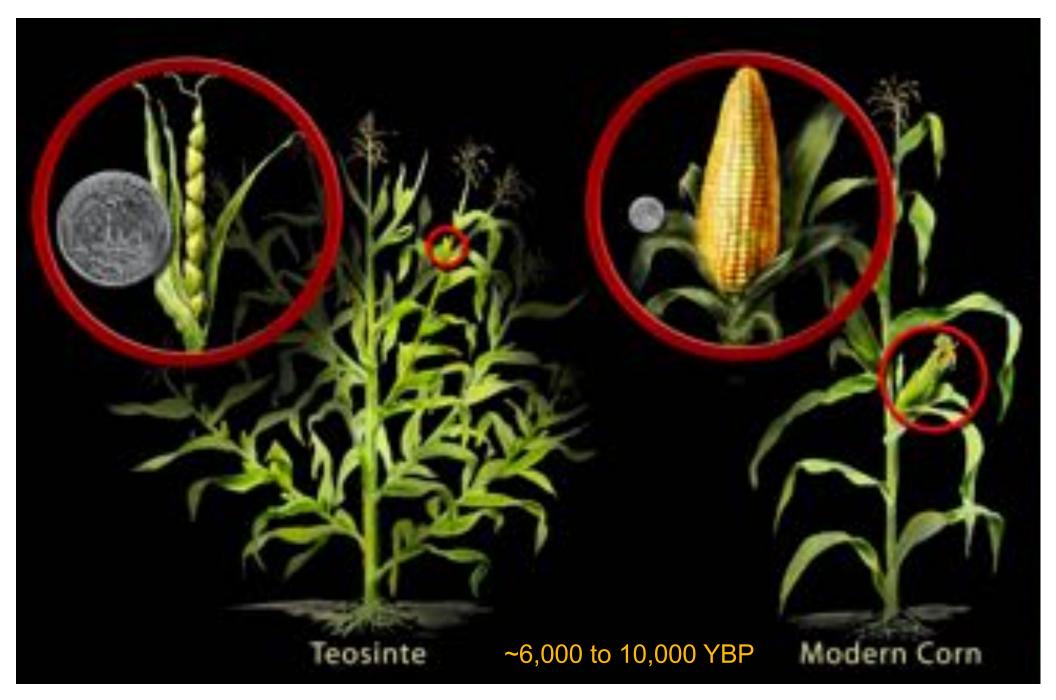
Ultra-large scale biocomputing

Fang et al. (2018) Stevens *et al.* (2015)

Biotechnology Development


Single Cell + Single Molecule Sequencing

Chin et al. (2016) Garvin et al. (2015)


Any Guesses?

15,000 to 35,000 YBP

~1,000 to 10,000 YBP

Discovery of Chromosomes

By the mid-1800s, microscopes were powerful enough to observe the presence of unusual structures called "chromosomes" that seemed to play an important role during cell division.

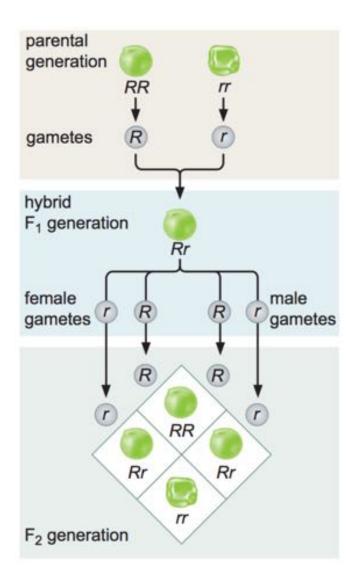
It was only possible to see the chromosomes unless appropriate stains were used

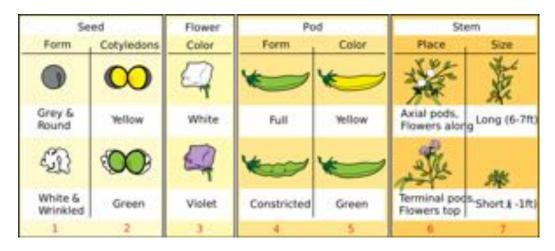
"Chromosome" comes from the Greek words meaning "color body"

Today, we have much higher resolution microscopes, and a much richer varieties of dies and dying techniques so that we can visualize particular sequence elements.

When you see something unexpected that you think might be interesting, give it a name

Drawing of mitosis by Walther Flemming.


Flemming, W. Zellsubstanz, Kern und Zelltheilung (F. C. W. Vogel, Leipzig, 1882).



The "first" quantitative biologist

Any Guesses?

Laws of Inheritance

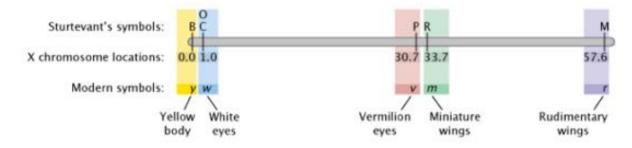
http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization

Observations of 29,000 pea plants and 7 traits

					in Verhältniss			gestellt:	
Generation	A	Aa	a	A	:	Aa	:	a	
1	1	2	1	1	:	2	:	1	
2	6	4	6	3	:	2	:	3	
3	28	8	28	7	:	2	:	7	
4	120	16	120	15	:	2	;	15	
5	496	32	496	31		2	÷	31	
n				2"-1	:	2	:	2"-1	

Versuche über Pflanzen-Hybriden. Verh. Naturforsch (Experiments in Plant Hybridization) Mendel, G. (1866). Ver. Brünn 4: 3–47 (in English in 1901, J. R. Hortic. Soc. 26: 1–32).

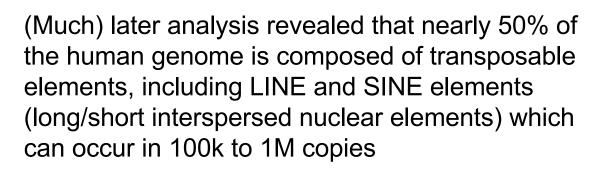
The first genetic map


Mendel's Second Law (The Law of Independent Assortment) states alleles of one gene sort into gametes independently of the alleles of another gene: *Pr(smooth/wrinkle) is independent of Pr(yellow/green)*

Morgan and Sturtevant noticed that the probability of having one trait given another was **not** always 50/50– those traits are **genetically linked**

http://www.caltech.edu/news/first-genetic-linkage-map-38798

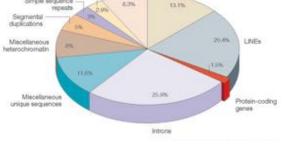
Sturtevant realized the probabilities of co-occurrences could be explained if those alleles were arranged on a linear fashion: traits that are most commonly observed together must be locates closest together



The Linear Arrangement of Six Sex-Linked Factors in Drosophila as shown by their mode of Association Sturtevant, A. H. (1913) Journal of Experimental Zoology, 14: 43-59

Jumping Genes

Previously, genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string


Careful breeding and cytogenetics revealed that some elements can move (cut-and-paste, DNA transposons) or copy itself (copy-and-paste, retrotransposons)

The origin and behavior of mutable loci in maize.

McClintock, B. (1950) *PNAS*. 36(6):344–355. Nobel Prize in Physiology or Medicine in 1983

SINE

(Gregory, 2005, Nature Reviews Genetics)

Discovery of the Double Helix

no. erre April 25, 1953

NATURE

equipment, and to Dr. G. E. R. Descen and the explain and officers of R.R.S. Discovery II for their part in making the observations, Tring, F. R., Gerald, H., and Jerose, W., Phil, Mur., 48, 141

¹ Longman, Briggins, M. S., Non, Nut. Ang. Astro. Soc., Graphan. Supp., & Discontinuous.

" Sun Ara, N. P., Woods Hole Papers in Phys. Science, Mitters, 11 the outside, cutions have easy access to there. *Element, Y., W., Addie, Mrd., Adven, Paula, Olivellarian, 8 (11) (1909).

MOLECULAR STRUCTURE OF NUCLEIC ACIDS

A Structure for Deoxyribose Nucleic Acid

WE wish to suggest a structure for the salt W of decayribuse nucleic acid (D.N.A.). This structure has novel features which are of cossiderable biological interiet.

A structure for racioic acid has already been proposed by Pauling and Corey*. They kinelly made their memory available to us in advance of publication. Their model consists of three interrwined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory for two reasons: (1) We believe that the material which given the X-ray diagrams is the salt, not the free acid. Without the acidic hydrogen atoms it is not clear what forces would hold the structure together, especially as the negatively charged plauphates near the axis will repel each other. (2) Some of the van der Waals damances appear to be too small. Another three-chain structure has also been ang-

gened by Freez in the press). In his model the phosphates are on the conside and the bases on the needs, inded together by bydrogen bonds. This netecture as described is rather ill-defined, and for this reason we shall not commonwi-

> We wish to put forward a radically different structure for the salt of decoyribose muchaie This structure has two acid. helical chains each colled record the enum axis (see diagram). We have made the usual chemical nonumptions, namely, that each chain consists of phosphate diester groups joining 5-to-decep-riboformases residues with 2',5' linkages. The two chains (but sot their bases) are related by a dyad perpendicular to the fibre axis. Both chains follow righthanded helines, but owing to the dyad the sequences of the stoms in the two chains run thain locarly resembles Fur-berg's² model No. 1; that is, the bases are on the suride of the helix and the phosphates on

> > cluse to Furberg's

the cutside. The configuration of the anger and the atoms 'standard configuration', the stagae being roughly perpendi-rular to the attached base. There

is a residue on each chain every 3-4 A. in the z-firsetion. We have assauld as angle of 36' between adjacent residues in the same chain, so that the structure repeats after 10 residues on each chain, that in, after 54 A. The distance of a phosphorus atom from the fibre axis is 10 A. As the phosphates are on

The structure is an open one, and its water content is eather high. At lowur water contents we would expect the bases to tilt so that the structure could

7.97

become more compact. The novel feature of the structure is the manner in which the two chains are hold together by the perine and pyrimidize bases. The planes of the bases are perpendicular to the fibre axis. They are joined together in pairs, a single base from one chain being hydrogen-bonded to a single base from the other chain, so that the two lie aids by side with identical z-co-ordinates. One of the pair must be a purine and the other a pyrimidize for bonding to occur. The hydrogen bonds are made as follows : purine position I to pytimidine position I; purise position & to imitine position 6. \$57

If it is assumed that the bases only occur in the structure in the most plausible tautometic forms (that is, with the keto rather than the snol configurations) is in found that only specific pairs of bases can bond together. These pairs are ; admine (purine) with thymine (pyrimidize), and gasaine (parine) with cytomia (pyrimidina). In other words, if an admine forms one member of

In other works, if an advance forms one member of a pair, on either chain, then as these assumptions the other member must be thymins ; annihrly for guantize and cytosias. The sequence of bases on a single chain does not appear to be restricted in any way. However, if only specific pairs of bases can be formed, it follows that if the sequence of bases on one chain is given, then the sequence of bases on one chain is given, then the sequence of the other shole is entomethatik determined. chain is automatically determined.

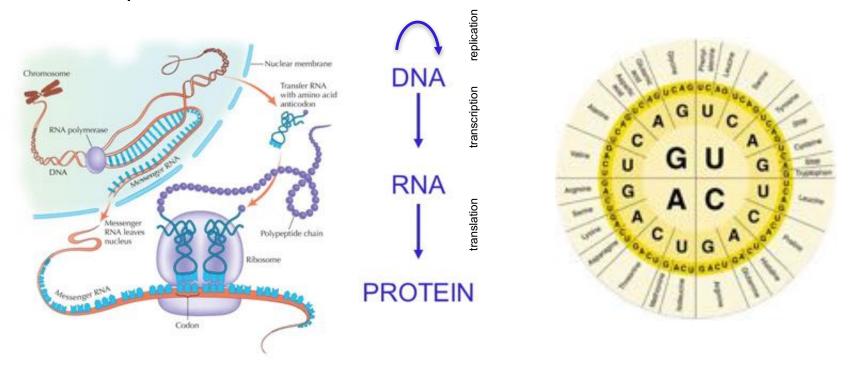
It has been found experimentally^{4,4} that the ratio of the amounts of advance to thypning, and the ratio of gannine to cytonine, are always very close to unity for decoryribose markie and.

It is probably impossible to build this structure with a ribose sugar in place of the decayribose, as the extra oxygen atom would make too close a van der Waals contact.

The previously published X-ray data^{1,4} on decay-ribose nucleis acid are insufficient for a rigorous test of our strategistics. So is accurately to a supervise tender of our strategistics. So far as we can thil, it is roughly compatible with the experimental data, but it must be regarded as unproved used it has been cheolized against more constrained. Some of these are given in the following concentration. of the details of the results presented there when we devised our structure, which rests mainly though not entirely on published experimental data and sterroobenical arguments. It has not excepted our notice that the specific

pairing we have postulated immediately suggests a opposite directions. Each possible copying mechanism for the genetic material, sin locarly resembles Pur- Pull details of the structure, including the conditions assumed in building it, together with a set of co-ordinates for the atoms, will be published where.

We are much indebted to Dr. Jorry Donoleus for constant advice and criticism, especially on interstoraic distances. We have also been stimulated by a knowledge of the present rature of the unpublished experimental results and ideas of Dr. M. H. F. Wilkins, Dr. R. E. Fracklin and their co-workers at


unumour angumonios.

It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material. Full details of the structure, including the con-

Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid Watson JD, Crick FH (1953). Nature 171: 737-738. Nobel Prize in Physiology or Medicine in 1962

Central Dogma of Molecular Biology

"Once 'information' has passed into protein it cannot get out again. In more detail, the transfer of information **from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible**, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein"

On Protein Synthesis

Crick, F.H.C. (1958). Symposia of the Society for Experimental Biology pp. 138–163.

Milestones in Genomics: Zeroth Generation Sequencing

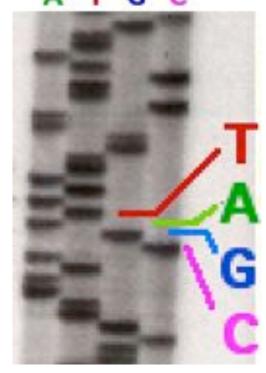
487

Nature	Vol.	365	February	24 1977	

articles

Nucleotide sequence of bacteriophage $\Phi X174 DNA$

F. Sauger, G. M. Air', B. G. Barrell, N. L. Brown', A. R. Coulson, J. C. Fiddes, C. A. Hutchison III', P. M. Slocombe³ & M. Smith'


MRC Laboratory of Molecular Biology, Hills Road, Cambridge C82 2QH, UK

A DNA sequence for the genome of bacteriophage $\Phi XI/A$ of approximately 5,175 machesidae has been determined using the rapid and imple "plus and minus" method. The sequence identifies many of the features reparable for the production of the proteins of the minus genes of the organism, including initiation and termination sites for the proteins and RNAs. Two pairs of geness are coded by the same region of DNA using different reading frames.

Test genome of bacteriophage $\Phi X174$ is a single-stranded, circular DNA of approximately 5,000 nucleotides coding for nine known proteins. The order of these geneses, as determined by genetic techniques¹⁻¹, is A-B-C-D-E-J-F-G-H. Genes F, G and H code for structural proteins of the vinus capied, and gene I das defined by sequence work) codes for a small back evotein strand DNA of ΦX has the same sequence as the mRNA and, in certain conditions, will hind riboxomes so that a protected fragment can be holded and sequenced. Only one major site was found that this riboxome binding site sequence coded for the initiation of the gene G protein⁶ (positions 23.62-24.13). At this tame sequencing technicage in sequence transfer sequences.

At this stage sequencing techniques using primed systhesis with DNA polymense were being devaluped¹⁴ and Schott¹¹ synthesized a decansclotiotie with a sequence complementary to part of the ribosene binding site. This was used to prime into the intercisionic region between the *I* and *G* gence, using DNA polymerane and ¹⁴P-labelled triphosphates¹⁵. The ribo-substitution sechnique¹⁴ flacitliated the expanse, determination of the labelled DNA produced. This decanacleoside-primed system was also used to develop the plos and misus method¹⁵. Suitable systemic primers are, however, difficult to pripare and an

I977 Ist Complete Organism Bacteriophage φXI74 5375 bp

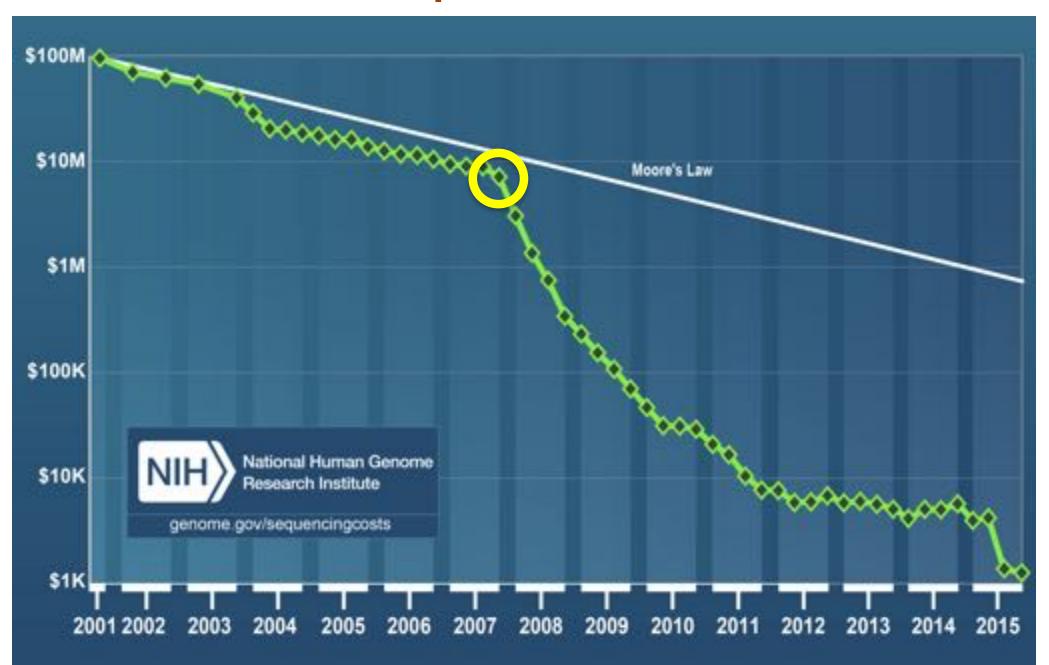
Radioactive Chain Termination 5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg http://www.answers.com/topic/automated-sequencer

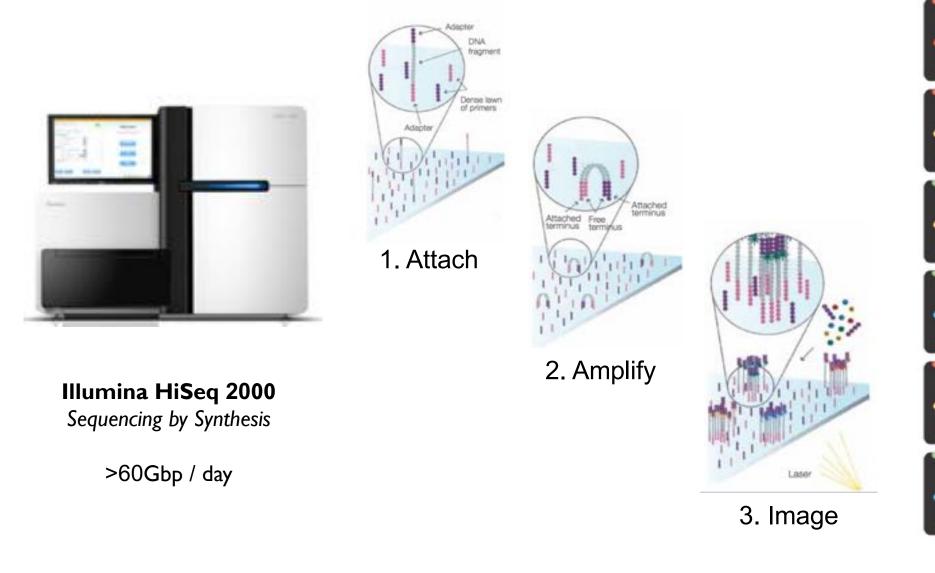
Nucleotide sequence of bacteriophage $\varphi XI74$ DNA

Sanger, F. et al. (1977) *Nature*. 265: 687 – 695 Nobel Prize in Chemistry in 1980

Milestones in DNA Sequencing


(TIGR/Celera, 1995-2001)

The most wondrous map...


"Without a doubt, this is the most important, most wondrous map ever produced by humankind."

Bíll Clinton June 26, 2000

Cost per Genome

Second Generation Sequencing

Metzker (2010) Nature Reviews Genetics 11:31-46 https://www.youtube.com/watch?v=fCd6B5HRaZ8

320 genomes per week / 18,000 genomes per year \$1000 per genome / ~\$10 M per instrument

Sequencing Centers

Worldwide capacity exceeds 50 Pbp/year Approximately 500k – 1M human genomes sequenced

Next Generation Genomics: World Map of High-throughput Sequencers http://omicsmaps.com

How much is a petabyte?

Unit	Size
Byte	
Kilobyte	I,000
Megabyte	1,000,000
Gigabyte	1,000,000,000
Terabyte	1,000,000,000,000
Petabyte	1,000,000,000,000,000

*Technically a kilobyte is 2^{10} and a petabyte is 2^{50}

How much is a petabyte?

100 GB / Genome 4.7GB / DVD ~20 DVDs / Genome

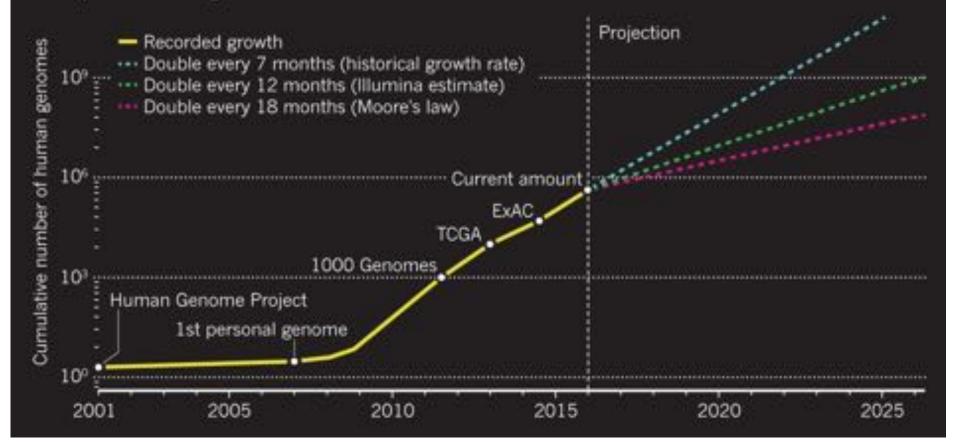
Х

10,000 Genomes

=

1PB Data 200,000 DVDs

787 feet of DVDs ~1/6 of a mile tall



500 2 TB drives \$100k

Sequencing Capacity

DNA SEQUENCING SOARS

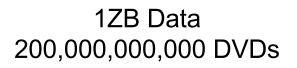
Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show three possible future growth curves.

Big Data: Astronomical or Genomical? Stephens, Z, et al. (2015) PLOS Biology DOI: 10.1371/journal.pbio.1002195

How much is a zettabyte?

Unit	Size
Byte	Ι
Kilobyte	I,000
Megabyte	1,000,000
Gigabyte	1,000,000,000
Terabyte	1,000,000,000,000
Petabyte	I,000,000,000,000,000
Exabyte	1,000,000,000,000,000,000
Zettabyte	I,000,000,000,000,000,000,000

How much is a zettabyte?

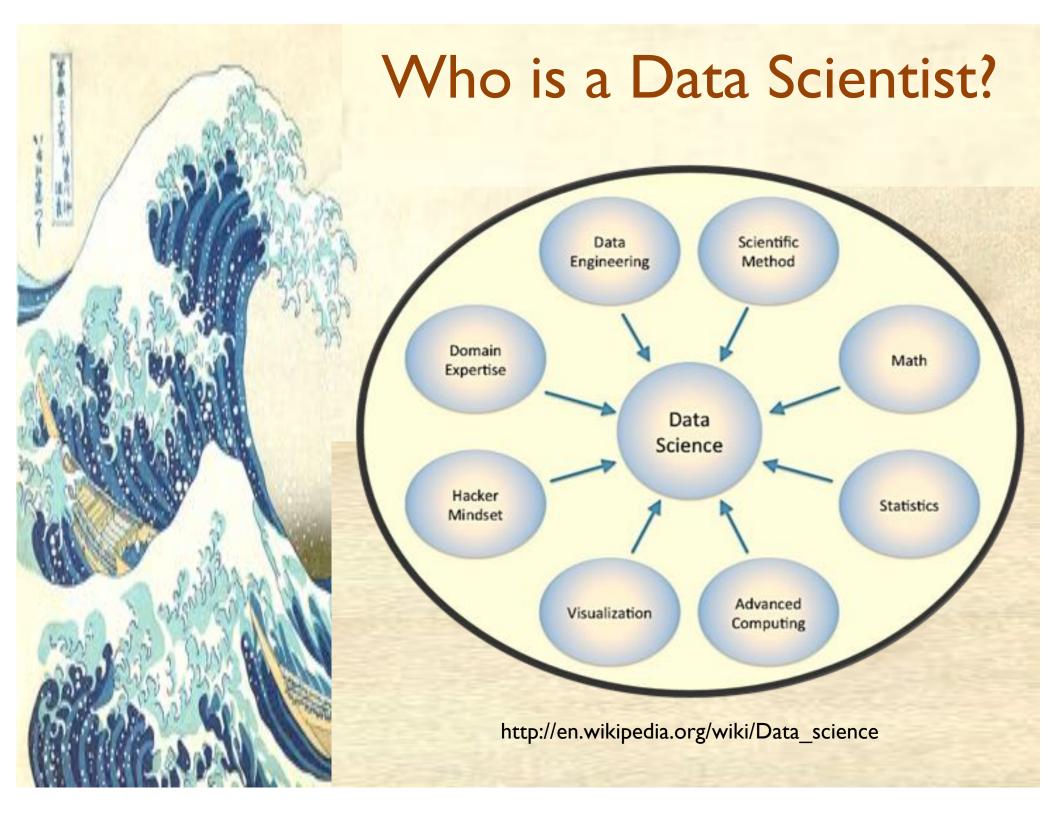


100 GB / Genome 4.7GB / DVD ~20 DVDs / Genome

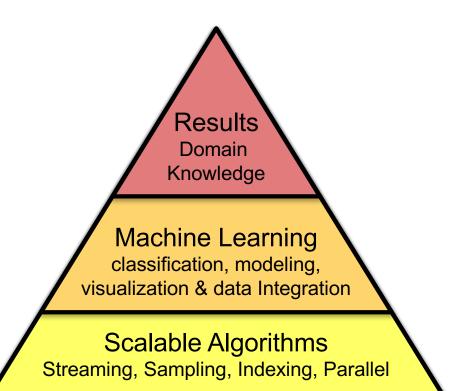
Х

10,000,000,000 Genomes

Ξ



You Tube



150,000 miles of DVDs $\sim \frac{1}{2}$ distance to moon

Both currently ~100Pb And growing exponentially

Comparative Genomics Technologies

Compute Systems CPU, GPU, Distributed, Clouds, Workflows

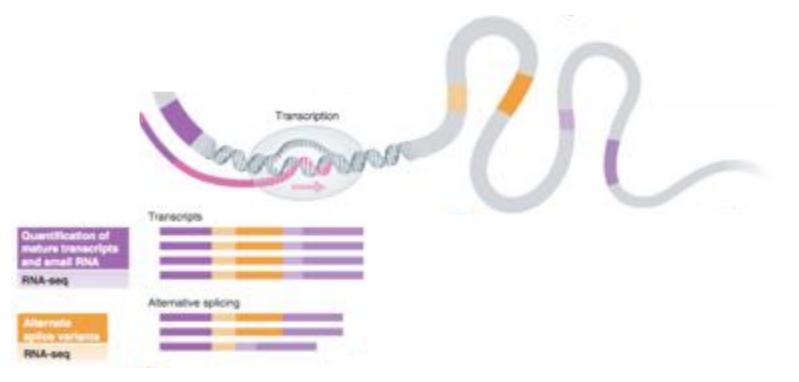
IO Systems Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

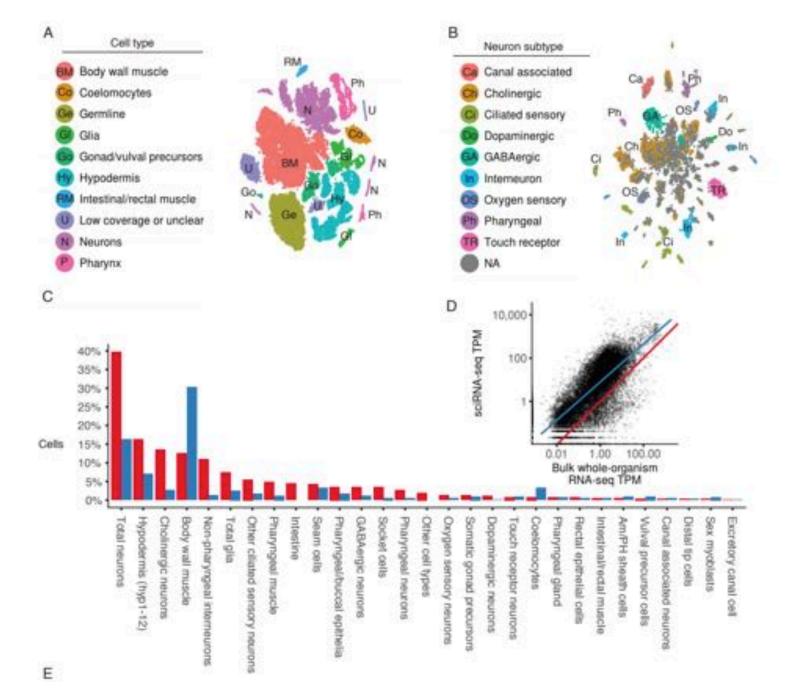
Results Domain Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms Streaming, Sampling, Indexing, Parallel


Compute Systems CPU, GPU, Distributed, Clouds, Workflows

IO Systems Hardrives, Networking, Databases, Compression, LIMS



Genomics Arsenal in the year 2018

Soon et al., Molecular Systems Biology, 2013

Comprehensive single-cell transcriptional profiling of a multicellular organism Cao, et al. (2017) Science. doi: 10.1126/science.aam8940

Results Domain Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms Streaming, Sampling, Indexing, Parallel

Compute Systems CPU, GPU, Distributed, Clouds, Workflows

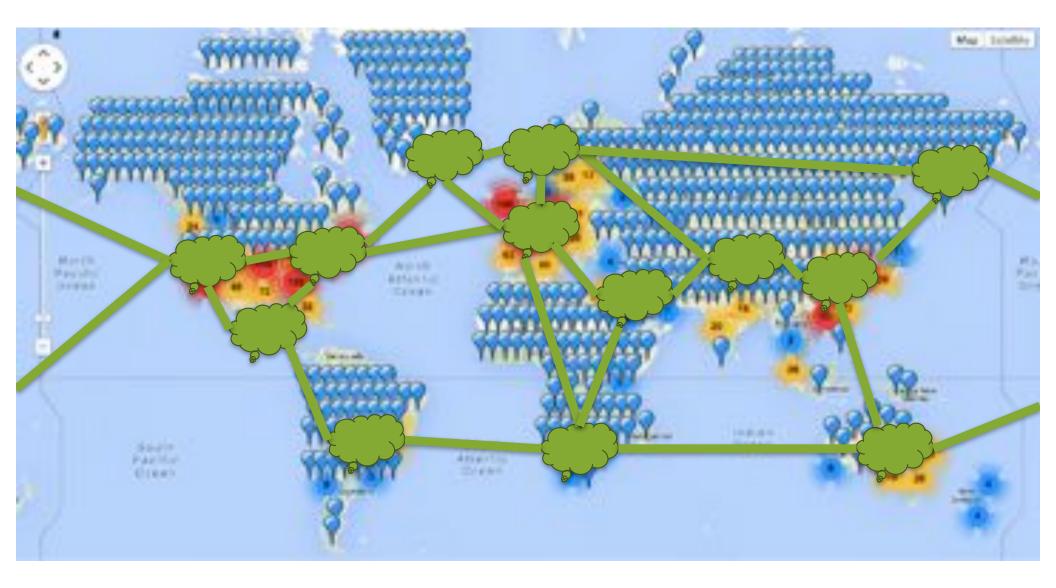
IO Systems Hardrives, Networking, Databases, Compression, LIMS



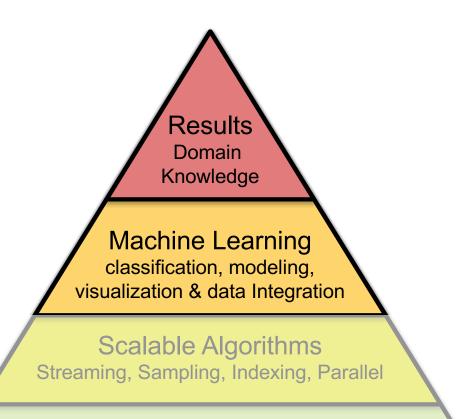
Sequencing Centers 2018

Next Generation Genomics: World Map of High-throughput Sequencers http://omicsmaps.com

Sequencing Centers 2028


Informatics Centers 2028

The DNA Data Deluge


Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013

Informatics Centers 2028

The DNA Data Deluge

Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013

Compute Systems CPU, GPU, Distributed, Clouds, Workflows

IO Systems Hardrives, Networking, Databases, Compression, LIMS

Genetic Basis of Autism Spectrum Disorders

Complex disorders of brain development

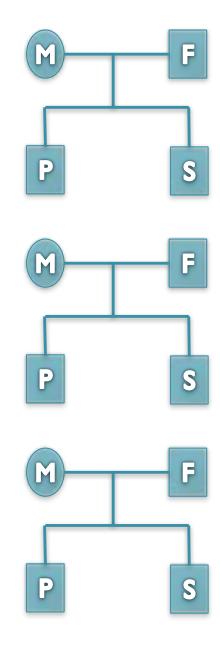
- Characterized by difficulties in social interaction, verbal and nonverbal communication and repetitive behaviors.
- Have their roots in very early brain development, and the most obvious signs of autism and symptoms of autism tend to emerge between 2 and 3 years of age.

U.S. CDC identify around 1 in 68 American children as on the autism spectrum

- Ten-fold increase in prevalence in 40 years, only partly explained by improved diagnosis and awareness.
- Studies also show that autism is four to five times more common among boys than girls.
- Specific causes remain elusive

What is Autism?

http://www.autismspeaks.org/what-autism


Searching for the genetic risk factors

Search Strategy

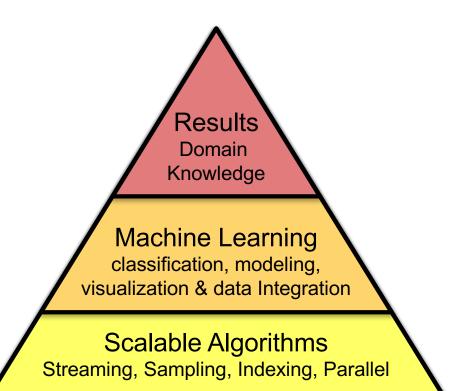
- Thousands of families identified from a dozen hospitals around the United States
- Large scale genome sequencing of "simplex" families: mother, father, affected child, unaffected sibling
- Unaffected siblings provide a natural control for environmental factors

Are there any genetic variants present in affected children, that are not in their parents or unaffected siblings?

De novo mutation discovery and validation

De novo mutations:

Sequences not inherited from your parents.


Reference:	TCAAATCCTTTTAATAAAGAAGAGCTGACA	
<pre>Father(1): Father(2):</pre>	TCAAATCCTTTTTAATAAAGAAGAGCTGACA TCAAATCCTTTTTAATAAAGAAGAGCTGACA	
Mother(1): Mother(2):	TCAAATCCTTTTAATAAAGAAGAGCTGACA TCAAATCCTTTTAATAAAGAAGAGCTGACA	
<u> </u>	TCAAATCCTTTTAATAAAGAAGAGCTGACA TCAAATCCTTTTAATAAAGAAGAGCTGACA	
	TCAAATCCTTTTTAATAAAGAAGAGCTGACA TCAAATCCTTTTTAAT***AAGAGCTGACA	

4bp heterozygous deletion at chr15:93524061 CHD2

De novo Genetics of Autism

- In 593 family quads so far, we see significant enrichment in de novo likely gene killers in the autistic kids
 - Overall rate basically 1:1
 - 2:1 enrichment in nonsense mutations
 - 2:1 enrichment in frameshift indels
 - 4:1 enrichment in splice-site mutations
 - Most de novo originate in the paternal line in an age-dependent manner (56:18 of the mutations that we could determine)
- Observe strong overlap with the 842 genes known to be associated with fragile X protein FMPR
 - Related to neuron development and synaptic plasticity
 - Also strong overlap with chromatin remodelers

Accurate de novo and transmitted indel detection in exome-capture data using microassembly. Narzisi *et al* (2014) Nature Methods doi:10.1038/nmeth.3069

Compute Systems CPU, GPU, Distributed, Clouds, Workflows

IO Systems Hardrives, Networking, Databases, Compression, LIMS

Next Steps

- I. Reflect on the magic and power of DNA \odot
- 2. Check out the course webpage
- 3. Register on Piazza
- 4. Get Ready for assignment I
 - I. Set up Linux, set up Virtual Machine
 - 2. Set up Dropbox for yourself!
 - 3. Get comfortable on the command line

Questions?